Step |
Hyp |
Ref |
Expression |
1 |
|
eliccelioc.a |
|- ( ph -> A e. RR ) |
2 |
|
eliccelioc.b |
|- ( ph -> B e. RR ) |
3 |
|
eliccelioc.c |
|- ( ph -> C e. RR* ) |
4 |
|
iocssicc |
|- ( A (,] B ) C_ ( A [,] B ) |
5 |
4
|
sseli |
|- ( C e. ( A (,] B ) -> C e. ( A [,] B ) ) |
6 |
5
|
adantl |
|- ( ( ph /\ C e. ( A (,] B ) ) -> C e. ( A [,] B ) ) |
7 |
1
|
adantr |
|- ( ( ph /\ C e. ( A (,] B ) ) -> A e. RR ) |
8 |
1
|
rexrd |
|- ( ph -> A e. RR* ) |
9 |
8
|
adantr |
|- ( ( ph /\ C e. ( A (,] B ) ) -> A e. RR* ) |
10 |
2
|
adantr |
|- ( ( ph /\ C e. ( A (,] B ) ) -> B e. RR ) |
11 |
10
|
rexrd |
|- ( ( ph /\ C e. ( A (,] B ) ) -> B e. RR* ) |
12 |
|
simpr |
|- ( ( ph /\ C e. ( A (,] B ) ) -> C e. ( A (,] B ) ) |
13 |
|
iocgtlb |
|- ( ( A e. RR* /\ B e. RR* /\ C e. ( A (,] B ) ) -> A < C ) |
14 |
9 11 12 13
|
syl3anc |
|- ( ( ph /\ C e. ( A (,] B ) ) -> A < C ) |
15 |
7 14
|
gtned |
|- ( ( ph /\ C e. ( A (,] B ) ) -> C =/= A ) |
16 |
6 15
|
jca |
|- ( ( ph /\ C e. ( A (,] B ) ) -> ( C e. ( A [,] B ) /\ C =/= A ) ) |
17 |
8
|
adantr |
|- ( ( ph /\ ( C e. ( A [,] B ) /\ C =/= A ) ) -> A e. RR* ) |
18 |
2
|
rexrd |
|- ( ph -> B e. RR* ) |
19 |
18
|
adantr |
|- ( ( ph /\ ( C e. ( A [,] B ) /\ C =/= A ) ) -> B e. RR* ) |
20 |
3
|
adantr |
|- ( ( ph /\ ( C e. ( A [,] B ) /\ C =/= A ) ) -> C e. RR* ) |
21 |
1
|
adantr |
|- ( ( ph /\ ( C e. ( A [,] B ) /\ C =/= A ) ) -> A e. RR ) |
22 |
1 2
|
iccssred |
|- ( ph -> ( A [,] B ) C_ RR ) |
23 |
22
|
sselda |
|- ( ( ph /\ C e. ( A [,] B ) ) -> C e. RR ) |
24 |
23
|
adantrr |
|- ( ( ph /\ ( C e. ( A [,] B ) /\ C =/= A ) ) -> C e. RR ) |
25 |
8
|
adantr |
|- ( ( ph /\ C e. ( A [,] B ) ) -> A e. RR* ) |
26 |
18
|
adantr |
|- ( ( ph /\ C e. ( A [,] B ) ) -> B e. RR* ) |
27 |
|
simpr |
|- ( ( ph /\ C e. ( A [,] B ) ) -> C e. ( A [,] B ) ) |
28 |
|
iccgelb |
|- ( ( A e. RR* /\ B e. RR* /\ C e. ( A [,] B ) ) -> A <_ C ) |
29 |
25 26 27 28
|
syl3anc |
|- ( ( ph /\ C e. ( A [,] B ) ) -> A <_ C ) |
30 |
29
|
adantrr |
|- ( ( ph /\ ( C e. ( A [,] B ) /\ C =/= A ) ) -> A <_ C ) |
31 |
|
simprr |
|- ( ( ph /\ ( C e. ( A [,] B ) /\ C =/= A ) ) -> C =/= A ) |
32 |
21 24 30 31
|
leneltd |
|- ( ( ph /\ ( C e. ( A [,] B ) /\ C =/= A ) ) -> A < C ) |
33 |
|
iccleub |
|- ( ( A e. RR* /\ B e. RR* /\ C e. ( A [,] B ) ) -> C <_ B ) |
34 |
25 26 27 33
|
syl3anc |
|- ( ( ph /\ C e. ( A [,] B ) ) -> C <_ B ) |
35 |
34
|
adantrr |
|- ( ( ph /\ ( C e. ( A [,] B ) /\ C =/= A ) ) -> C <_ B ) |
36 |
17 19 20 32 35
|
eliocd |
|- ( ( ph /\ ( C e. ( A [,] B ) /\ C =/= A ) ) -> C e. ( A (,] B ) ) |
37 |
16 36
|
impbida |
|- ( ph -> ( C e. ( A (,] B ) <-> ( C e. ( A [,] B ) /\ C =/= A ) ) ) |