| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eliccelioc.a |
|- ( ph -> A e. RR ) |
| 2 |
|
eliccelioc.b |
|- ( ph -> B e. RR ) |
| 3 |
|
eliccelioc.c |
|- ( ph -> C e. RR* ) |
| 4 |
|
iocssicc |
|- ( A (,] B ) C_ ( A [,] B ) |
| 5 |
4
|
sseli |
|- ( C e. ( A (,] B ) -> C e. ( A [,] B ) ) |
| 6 |
5
|
adantl |
|- ( ( ph /\ C e. ( A (,] B ) ) -> C e. ( A [,] B ) ) |
| 7 |
1
|
adantr |
|- ( ( ph /\ C e. ( A (,] B ) ) -> A e. RR ) |
| 8 |
1
|
rexrd |
|- ( ph -> A e. RR* ) |
| 9 |
8
|
adantr |
|- ( ( ph /\ C e. ( A (,] B ) ) -> A e. RR* ) |
| 10 |
2
|
adantr |
|- ( ( ph /\ C e. ( A (,] B ) ) -> B e. RR ) |
| 11 |
10
|
rexrd |
|- ( ( ph /\ C e. ( A (,] B ) ) -> B e. RR* ) |
| 12 |
|
simpr |
|- ( ( ph /\ C e. ( A (,] B ) ) -> C e. ( A (,] B ) ) |
| 13 |
|
iocgtlb |
|- ( ( A e. RR* /\ B e. RR* /\ C e. ( A (,] B ) ) -> A < C ) |
| 14 |
9 11 12 13
|
syl3anc |
|- ( ( ph /\ C e. ( A (,] B ) ) -> A < C ) |
| 15 |
7 14
|
gtned |
|- ( ( ph /\ C e. ( A (,] B ) ) -> C =/= A ) |
| 16 |
6 15
|
jca |
|- ( ( ph /\ C e. ( A (,] B ) ) -> ( C e. ( A [,] B ) /\ C =/= A ) ) |
| 17 |
8
|
adantr |
|- ( ( ph /\ ( C e. ( A [,] B ) /\ C =/= A ) ) -> A e. RR* ) |
| 18 |
2
|
rexrd |
|- ( ph -> B e. RR* ) |
| 19 |
18
|
adantr |
|- ( ( ph /\ ( C e. ( A [,] B ) /\ C =/= A ) ) -> B e. RR* ) |
| 20 |
3
|
adantr |
|- ( ( ph /\ ( C e. ( A [,] B ) /\ C =/= A ) ) -> C e. RR* ) |
| 21 |
1
|
adantr |
|- ( ( ph /\ ( C e. ( A [,] B ) /\ C =/= A ) ) -> A e. RR ) |
| 22 |
1 2
|
iccssred |
|- ( ph -> ( A [,] B ) C_ RR ) |
| 23 |
22
|
sselda |
|- ( ( ph /\ C e. ( A [,] B ) ) -> C e. RR ) |
| 24 |
23
|
adantrr |
|- ( ( ph /\ ( C e. ( A [,] B ) /\ C =/= A ) ) -> C e. RR ) |
| 25 |
8
|
adantr |
|- ( ( ph /\ C e. ( A [,] B ) ) -> A e. RR* ) |
| 26 |
18
|
adantr |
|- ( ( ph /\ C e. ( A [,] B ) ) -> B e. RR* ) |
| 27 |
|
simpr |
|- ( ( ph /\ C e. ( A [,] B ) ) -> C e. ( A [,] B ) ) |
| 28 |
|
iccgelb |
|- ( ( A e. RR* /\ B e. RR* /\ C e. ( A [,] B ) ) -> A <_ C ) |
| 29 |
25 26 27 28
|
syl3anc |
|- ( ( ph /\ C e. ( A [,] B ) ) -> A <_ C ) |
| 30 |
29
|
adantrr |
|- ( ( ph /\ ( C e. ( A [,] B ) /\ C =/= A ) ) -> A <_ C ) |
| 31 |
|
simprr |
|- ( ( ph /\ ( C e. ( A [,] B ) /\ C =/= A ) ) -> C =/= A ) |
| 32 |
21 24 30 31
|
leneltd |
|- ( ( ph /\ ( C e. ( A [,] B ) /\ C =/= A ) ) -> A < C ) |
| 33 |
|
iccleub |
|- ( ( A e. RR* /\ B e. RR* /\ C e. ( A [,] B ) ) -> C <_ B ) |
| 34 |
25 26 27 33
|
syl3anc |
|- ( ( ph /\ C e. ( A [,] B ) ) -> C <_ B ) |
| 35 |
34
|
adantrr |
|- ( ( ph /\ ( C e. ( A [,] B ) /\ C =/= A ) ) -> C <_ B ) |
| 36 |
17 19 20 32 35
|
eliocd |
|- ( ( ph /\ ( C e. ( A [,] B ) /\ C =/= A ) ) -> C e. ( A (,] B ) ) |
| 37 |
16 36
|
impbida |
|- ( ph -> ( C e. ( A (,] B ) <-> ( C e. ( A [,] B ) /\ C =/= A ) ) ) |