| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eliccelioc.a |
|
| 2 |
|
eliccelioc.b |
|
| 3 |
|
eliccelioc.c |
|
| 4 |
|
iocssicc |
|
| 5 |
4
|
sseli |
|
| 6 |
5
|
adantl |
|
| 7 |
1
|
adantr |
|
| 8 |
1
|
rexrd |
|
| 9 |
8
|
adantr |
|
| 10 |
2
|
adantr |
|
| 11 |
10
|
rexrd |
|
| 12 |
|
simpr |
|
| 13 |
|
iocgtlb |
|
| 14 |
9 11 12 13
|
syl3anc |
|
| 15 |
7 14
|
gtned |
|
| 16 |
6 15
|
jca |
|
| 17 |
8
|
adantr |
|
| 18 |
2
|
rexrd |
|
| 19 |
18
|
adantr |
|
| 20 |
3
|
adantr |
|
| 21 |
1
|
adantr |
|
| 22 |
1 2
|
iccssred |
|
| 23 |
22
|
sselda |
|
| 24 |
23
|
adantrr |
|
| 25 |
8
|
adantr |
|
| 26 |
18
|
adantr |
|
| 27 |
|
simpr |
|
| 28 |
|
iccgelb |
|
| 29 |
25 26 27 28
|
syl3anc |
|
| 30 |
29
|
adantrr |
|
| 31 |
|
simprr |
|
| 32 |
21 24 30 31
|
leneltd |
|
| 33 |
|
iccleub |
|
| 34 |
25 26 27 33
|
syl3anc |
|
| 35 |
34
|
adantrr |
|
| 36 |
17 19 20 32 35
|
eliocd |
|
| 37 |
16 36
|
impbida |
|