Step |
Hyp |
Ref |
Expression |
1 |
|
df-ioc |
|- (,] = ( x e. RR* , y e. RR* |-> { z e. RR* | ( x < z /\ z <_ y ) } ) |
2 |
1
|
elixx3g |
|- ( C e. ( A (,] B ) <-> ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ ( A < C /\ C <_ B ) ) ) |
3 |
2
|
biimpi |
|- ( C e. ( A (,] B ) -> ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ ( A < C /\ C <_ B ) ) ) |
4 |
3
|
simpld |
|- ( C e. ( A (,] B ) -> ( A e. RR* /\ B e. RR* /\ C e. RR* ) ) |
5 |
4
|
simp3d |
|- ( C e. ( A (,] B ) -> C e. RR* ) |
6 |
5
|
adantl |
|- ( ( B e. RR /\ C e. ( A (,] B ) ) -> C e. RR* ) |
7 |
|
simpl |
|- ( ( B e. RR /\ C e. ( A (,] B ) ) -> B e. RR ) |
8 |
|
mnfxr |
|- -oo e. RR* |
9 |
8
|
a1i |
|- ( C e. ( A (,] B ) -> -oo e. RR* ) |
10 |
4
|
simp1d |
|- ( C e. ( A (,] B ) -> A e. RR* ) |
11 |
|
mnfle |
|- ( A e. RR* -> -oo <_ A ) |
12 |
10 11
|
syl |
|- ( C e. ( A (,] B ) -> -oo <_ A ) |
13 |
3
|
simprd |
|- ( C e. ( A (,] B ) -> ( A < C /\ C <_ B ) ) |
14 |
13
|
simpld |
|- ( C e. ( A (,] B ) -> A < C ) |
15 |
9 10 5 12 14
|
xrlelttrd |
|- ( C e. ( A (,] B ) -> -oo < C ) |
16 |
15
|
adantl |
|- ( ( B e. RR /\ C e. ( A (,] B ) ) -> -oo < C ) |
17 |
13
|
simprd |
|- ( C e. ( A (,] B ) -> C <_ B ) |
18 |
17
|
adantl |
|- ( ( B e. RR /\ C e. ( A (,] B ) ) -> C <_ B ) |
19 |
|
xrre |
|- ( ( ( C e. RR* /\ B e. RR ) /\ ( -oo < C /\ C <_ B ) ) -> C e. RR ) |
20 |
6 7 16 18 19
|
syl22anc |
|- ( ( B e. RR /\ C e. ( A (,] B ) ) -> C e. RR ) |