Step |
Hyp |
Ref |
Expression |
1 |
|
eqg0subg.0 |
|- .0. = ( 0g ` G ) |
2 |
|
eqg0subg.s |
|- S = { .0. } |
3 |
|
eqg0subg.b |
|- B = ( Base ` G ) |
4 |
|
eqg0subg.r |
|- R = ( G ~QG S ) |
5 |
1
|
0subg |
|- ( G e. Grp -> { .0. } e. ( SubGrp ` G ) ) |
6 |
3
|
subgss |
|- ( { .0. } e. ( SubGrp ` G ) -> { .0. } C_ B ) |
7 |
5 6
|
syl |
|- ( G e. Grp -> { .0. } C_ B ) |
8 |
2 7
|
eqsstrid |
|- ( G e. Grp -> S C_ B ) |
9 |
|
eqid |
|- ( invg ` G ) = ( invg ` G ) |
10 |
|
eqid |
|- ( +g ` G ) = ( +g ` G ) |
11 |
3 9 10 4
|
eqgfval |
|- ( ( G e. Grp /\ S C_ B ) -> R = { <. x , y >. | ( { x , y } C_ B /\ ( ( ( invg ` G ) ` x ) ( +g ` G ) y ) e. S ) } ) |
12 |
8 11
|
mpdan |
|- ( G e. Grp -> R = { <. x , y >. | ( { x , y } C_ B /\ ( ( ( invg ` G ) ` x ) ( +g ` G ) y ) e. S ) } ) |
13 |
|
opabresid |
|- ( _I |` B ) = { <. x , y >. | ( x e. B /\ y = x ) } |
14 |
|
simpl |
|- ( ( x e. B /\ y = x ) -> x e. B ) |
15 |
|
eleq1w |
|- ( x = y -> ( x e. B <-> y e. B ) ) |
16 |
15
|
equcoms |
|- ( y = x -> ( x e. B <-> y e. B ) ) |
17 |
16
|
biimpac |
|- ( ( x e. B /\ y = x ) -> y e. B ) |
18 |
|
simpr |
|- ( ( x e. B /\ y = x ) -> y = x ) |
19 |
14 17 18
|
jca31 |
|- ( ( x e. B /\ y = x ) -> ( ( x e. B /\ y e. B ) /\ y = x ) ) |
20 |
|
simpl |
|- ( ( x e. B /\ y e. B ) -> x e. B ) |
21 |
20
|
anim1i |
|- ( ( ( x e. B /\ y e. B ) /\ y = x ) -> ( x e. B /\ y = x ) ) |
22 |
21
|
a1i |
|- ( G e. Grp -> ( ( ( x e. B /\ y e. B ) /\ y = x ) -> ( x e. B /\ y = x ) ) ) |
23 |
19 22
|
impbid2 |
|- ( G e. Grp -> ( ( x e. B /\ y = x ) <-> ( ( x e. B /\ y e. B ) /\ y = x ) ) ) |
24 |
|
simpl |
|- ( ( G e. Grp /\ ( x e. B /\ y e. B ) ) -> G e. Grp ) |
25 |
|
simpr |
|- ( ( x e. B /\ y e. B ) -> y e. B ) |
26 |
25
|
adantl |
|- ( ( G e. Grp /\ ( x e. B /\ y e. B ) ) -> y e. B ) |
27 |
20
|
adantl |
|- ( ( G e. Grp /\ ( x e. B /\ y e. B ) ) -> x e. B ) |
28 |
3 9 24 26 27
|
grpinv11 |
|- ( ( G e. Grp /\ ( x e. B /\ y e. B ) ) -> ( ( ( invg ` G ) ` y ) = ( ( invg ` G ) ` x ) <-> y = x ) ) |
29 |
3 9
|
grpinvcl |
|- ( ( G e. Grp /\ x e. B ) -> ( ( invg ` G ) ` x ) e. B ) |
30 |
29
|
adantrr |
|- ( ( G e. Grp /\ ( x e. B /\ y e. B ) ) -> ( ( invg ` G ) ` x ) e. B ) |
31 |
3 10 1 9
|
grpinvid2 |
|- ( ( G e. Grp /\ y e. B /\ ( ( invg ` G ) ` x ) e. B ) -> ( ( ( invg ` G ) ` y ) = ( ( invg ` G ) ` x ) <-> ( ( ( invg ` G ) ` x ) ( +g ` G ) y ) = .0. ) ) |
32 |
24 26 30 31
|
syl3anc |
|- ( ( G e. Grp /\ ( x e. B /\ y e. B ) ) -> ( ( ( invg ` G ) ` y ) = ( ( invg ` G ) ` x ) <-> ( ( ( invg ` G ) ` x ) ( +g ` G ) y ) = .0. ) ) |
33 |
28 32
|
bitr3d |
|- ( ( G e. Grp /\ ( x e. B /\ y e. B ) ) -> ( y = x <-> ( ( ( invg ` G ) ` x ) ( +g ` G ) y ) = .0. ) ) |
34 |
33
|
pm5.32da |
|- ( G e. Grp -> ( ( ( x e. B /\ y e. B ) /\ y = x ) <-> ( ( x e. B /\ y e. B ) /\ ( ( ( invg ` G ) ` x ) ( +g ` G ) y ) = .0. ) ) ) |
35 |
|
vex |
|- x e. _V |
36 |
|
vex |
|- y e. _V |
37 |
35 36
|
prss |
|- ( ( x e. B /\ y e. B ) <-> { x , y } C_ B ) |
38 |
37
|
a1i |
|- ( G e. Grp -> ( ( x e. B /\ y e. B ) <-> { x , y } C_ B ) ) |
39 |
2
|
eleq2i |
|- ( ( ( ( invg ` G ) ` x ) ( +g ` G ) y ) e. S <-> ( ( ( invg ` G ) ` x ) ( +g ` G ) y ) e. { .0. } ) |
40 |
|
ovex |
|- ( ( ( invg ` G ) ` x ) ( +g ` G ) y ) e. _V |
41 |
40
|
elsn |
|- ( ( ( ( invg ` G ) ` x ) ( +g ` G ) y ) e. { .0. } <-> ( ( ( invg ` G ) ` x ) ( +g ` G ) y ) = .0. ) |
42 |
39 41
|
bitr2i |
|- ( ( ( ( invg ` G ) ` x ) ( +g ` G ) y ) = .0. <-> ( ( ( invg ` G ) ` x ) ( +g ` G ) y ) e. S ) |
43 |
42
|
a1i |
|- ( G e. Grp -> ( ( ( ( invg ` G ) ` x ) ( +g ` G ) y ) = .0. <-> ( ( ( invg ` G ) ` x ) ( +g ` G ) y ) e. S ) ) |
44 |
38 43
|
anbi12d |
|- ( G e. Grp -> ( ( ( x e. B /\ y e. B ) /\ ( ( ( invg ` G ) ` x ) ( +g ` G ) y ) = .0. ) <-> ( { x , y } C_ B /\ ( ( ( invg ` G ) ` x ) ( +g ` G ) y ) e. S ) ) ) |
45 |
23 34 44
|
3bitrd |
|- ( G e. Grp -> ( ( x e. B /\ y = x ) <-> ( { x , y } C_ B /\ ( ( ( invg ` G ) ` x ) ( +g ` G ) y ) e. S ) ) ) |
46 |
45
|
opabbidv |
|- ( G e. Grp -> { <. x , y >. | ( x e. B /\ y = x ) } = { <. x , y >. | ( { x , y } C_ B /\ ( ( ( invg ` G ) ` x ) ( +g ` G ) y ) e. S ) } ) |
47 |
13 46
|
eqtr2id |
|- ( G e. Grp -> { <. x , y >. | ( { x , y } C_ B /\ ( ( ( invg ` G ) ` x ) ( +g ` G ) y ) e. S ) } = ( _I |` B ) ) |
48 |
12 47
|
eqtrd |
|- ( G e. Grp -> R = ( _I |` B ) ) |