Step |
Hyp |
Ref |
Expression |
1 |
|
fin23lem.a |
|- U = seqom ( ( i e. _om , u e. _V |-> if ( ( ( t ` i ) i^i u ) = (/) , u , ( ( t ` i ) i^i u ) ) ) , U. ran t ) |
2 |
|
fin23lem17.f |
|- F = { g | A. a e. ( ~P g ^m _om ) ( A. x e. _om ( a ` suc x ) C_ ( a ` x ) -> |^| ran a e. ran a ) } |
3 |
1
|
fin23lem13 |
|- ( c e. _om -> ( U ` suc c ) C_ ( U ` c ) ) |
4 |
3
|
rgen |
|- A. c e. _om ( U ` suc c ) C_ ( U ` c ) |
5 |
|
fveq1 |
|- ( b = U -> ( b ` suc c ) = ( U ` suc c ) ) |
6 |
|
fveq1 |
|- ( b = U -> ( b ` c ) = ( U ` c ) ) |
7 |
5 6
|
sseq12d |
|- ( b = U -> ( ( b ` suc c ) C_ ( b ` c ) <-> ( U ` suc c ) C_ ( U ` c ) ) ) |
8 |
7
|
ralbidv |
|- ( b = U -> ( A. c e. _om ( b ` suc c ) C_ ( b ` c ) <-> A. c e. _om ( U ` suc c ) C_ ( U ` c ) ) ) |
9 |
|
rneq |
|- ( b = U -> ran b = ran U ) |
10 |
9
|
inteqd |
|- ( b = U -> |^| ran b = |^| ran U ) |
11 |
10 9
|
eleq12d |
|- ( b = U -> ( |^| ran b e. ran b <-> |^| ran U e. ran U ) ) |
12 |
8 11
|
imbi12d |
|- ( b = U -> ( ( A. c e. _om ( b ` suc c ) C_ ( b ` c ) -> |^| ran b e. ran b ) <-> ( A. c e. _om ( U ` suc c ) C_ ( U ` c ) -> |^| ran U e. ran U ) ) ) |
13 |
2
|
isfin3ds |
|- ( U. ran t e. F -> ( U. ran t e. F <-> A. b e. ( ~P U. ran t ^m _om ) ( A. c e. _om ( b ` suc c ) C_ ( b ` c ) -> |^| ran b e. ran b ) ) ) |
14 |
13
|
ibi |
|- ( U. ran t e. F -> A. b e. ( ~P U. ran t ^m _om ) ( A. c e. _om ( b ` suc c ) C_ ( b ` c ) -> |^| ran b e. ran b ) ) |
15 |
14
|
adantr |
|- ( ( U. ran t e. F /\ t : _om -1-1-> V ) -> A. b e. ( ~P U. ran t ^m _om ) ( A. c e. _om ( b ` suc c ) C_ ( b ` c ) -> |^| ran b e. ran b ) ) |
16 |
1
|
fnseqom |
|- U Fn _om |
17 |
|
dffn3 |
|- ( U Fn _om <-> U : _om --> ran U ) |
18 |
16 17
|
mpbi |
|- U : _om --> ran U |
19 |
|
pwuni |
|- ran U C_ ~P U. ran U |
20 |
1
|
fin23lem16 |
|- U. ran U = U. ran t |
21 |
20
|
pweqi |
|- ~P U. ran U = ~P U. ran t |
22 |
19 21
|
sseqtri |
|- ran U C_ ~P U. ran t |
23 |
|
fss |
|- ( ( U : _om --> ran U /\ ran U C_ ~P U. ran t ) -> U : _om --> ~P U. ran t ) |
24 |
18 22 23
|
mp2an |
|- U : _om --> ~P U. ran t |
25 |
|
vex |
|- t e. _V |
26 |
25
|
rnex |
|- ran t e. _V |
27 |
26
|
uniex |
|- U. ran t e. _V |
28 |
27
|
pwex |
|- ~P U. ran t e. _V |
29 |
|
f1f |
|- ( t : _om -1-1-> V -> t : _om --> V ) |
30 |
|
dmfex |
|- ( ( t e. _V /\ t : _om --> V ) -> _om e. _V ) |
31 |
25 29 30
|
sylancr |
|- ( t : _om -1-1-> V -> _om e. _V ) |
32 |
31
|
adantl |
|- ( ( U. ran t e. F /\ t : _om -1-1-> V ) -> _om e. _V ) |
33 |
|
elmapg |
|- ( ( ~P U. ran t e. _V /\ _om e. _V ) -> ( U e. ( ~P U. ran t ^m _om ) <-> U : _om --> ~P U. ran t ) ) |
34 |
28 32 33
|
sylancr |
|- ( ( U. ran t e. F /\ t : _om -1-1-> V ) -> ( U e. ( ~P U. ran t ^m _om ) <-> U : _om --> ~P U. ran t ) ) |
35 |
24 34
|
mpbiri |
|- ( ( U. ran t e. F /\ t : _om -1-1-> V ) -> U e. ( ~P U. ran t ^m _om ) ) |
36 |
12 15 35
|
rspcdva |
|- ( ( U. ran t e. F /\ t : _om -1-1-> V ) -> ( A. c e. _om ( U ` suc c ) C_ ( U ` c ) -> |^| ran U e. ran U ) ) |
37 |
4 36
|
mpi |
|- ( ( U. ran t e. F /\ t : _om -1-1-> V ) -> |^| ran U e. ran U ) |