| Step |
Hyp |
Ref |
Expression |
| 1 |
|
flt4lem5a.m |
|- M = ( ( ( sqrt ` ( C + ( B ^ 2 ) ) ) + ( sqrt ` ( C - ( B ^ 2 ) ) ) ) / 2 ) |
| 2 |
|
flt4lem5a.n |
|- N = ( ( ( sqrt ` ( C + ( B ^ 2 ) ) ) - ( sqrt ` ( C - ( B ^ 2 ) ) ) ) / 2 ) |
| 3 |
|
flt4lem5a.r |
|- R = ( ( ( sqrt ` ( M + N ) ) + ( sqrt ` ( M - N ) ) ) / 2 ) |
| 4 |
|
flt4lem5a.s |
|- S = ( ( ( sqrt ` ( M + N ) ) - ( sqrt ` ( M - N ) ) ) / 2 ) |
| 5 |
|
flt4lem5a.a |
|- ( ph -> A e. NN ) |
| 6 |
|
flt4lem5a.b |
|- ( ph -> B e. NN ) |
| 7 |
|
flt4lem5a.c |
|- ( ph -> C e. NN ) |
| 8 |
|
flt4lem5a.1 |
|- ( ph -> -. 2 || A ) |
| 9 |
|
flt4lem5a.2 |
|- ( ph -> ( A gcd C ) = 1 ) |
| 10 |
|
flt4lem5a.3 |
|- ( ph -> ( ( A ^ 4 ) + ( B ^ 4 ) ) = ( C ^ 2 ) ) |
| 11 |
5
|
nnsqcld |
|- ( ph -> ( A ^ 2 ) e. NN ) |
| 12 |
6
|
nnsqcld |
|- ( ph -> ( B ^ 2 ) e. NN ) |
| 13 |
|
2prm |
|- 2 e. Prime |
| 14 |
5
|
nnzd |
|- ( ph -> A e. ZZ ) |
| 15 |
|
prmdvdssq |
|- ( ( 2 e. Prime /\ A e. ZZ ) -> ( 2 || A <-> 2 || ( A ^ 2 ) ) ) |
| 16 |
13 14 15
|
sylancr |
|- ( ph -> ( 2 || A <-> 2 || ( A ^ 2 ) ) ) |
| 17 |
8 16
|
mtbid |
|- ( ph -> -. 2 || ( A ^ 2 ) ) |
| 18 |
|
2nn |
|- 2 e. NN |
| 19 |
18
|
a1i |
|- ( ph -> 2 e. NN ) |
| 20 |
|
rplpwr |
|- ( ( A e. NN /\ C e. NN /\ 2 e. NN ) -> ( ( A gcd C ) = 1 -> ( ( A ^ 2 ) gcd C ) = 1 ) ) |
| 21 |
5 7 19 20
|
syl3anc |
|- ( ph -> ( ( A gcd C ) = 1 -> ( ( A ^ 2 ) gcd C ) = 1 ) ) |
| 22 |
9 21
|
mpd |
|- ( ph -> ( ( A ^ 2 ) gcd C ) = 1 ) |
| 23 |
5
|
nncnd |
|- ( ph -> A e. CC ) |
| 24 |
23
|
flt4lem |
|- ( ph -> ( A ^ 4 ) = ( ( A ^ 2 ) ^ 2 ) ) |
| 25 |
6
|
nncnd |
|- ( ph -> B e. CC ) |
| 26 |
25
|
flt4lem |
|- ( ph -> ( B ^ 4 ) = ( ( B ^ 2 ) ^ 2 ) ) |
| 27 |
24 26
|
oveq12d |
|- ( ph -> ( ( A ^ 4 ) + ( B ^ 4 ) ) = ( ( ( A ^ 2 ) ^ 2 ) + ( ( B ^ 2 ) ^ 2 ) ) ) |
| 28 |
27 10
|
eqtr3d |
|- ( ph -> ( ( ( A ^ 2 ) ^ 2 ) + ( ( B ^ 2 ) ^ 2 ) ) = ( C ^ 2 ) ) |
| 29 |
11 12 7 17 22 28
|
flt4lem1 |
|- ( ph -> ( ( ( A ^ 2 ) e. NN /\ ( B ^ 2 ) e. NN /\ C e. NN ) /\ ( ( ( A ^ 2 ) ^ 2 ) + ( ( B ^ 2 ) ^ 2 ) ) = ( C ^ 2 ) /\ ( ( ( A ^ 2 ) gcd ( B ^ 2 ) ) = 1 /\ -. 2 || ( A ^ 2 ) ) ) ) |
| 30 |
2
|
pythagtriplem13 |
|- ( ( ( ( A ^ 2 ) e. NN /\ ( B ^ 2 ) e. NN /\ C e. NN ) /\ ( ( ( A ^ 2 ) ^ 2 ) + ( ( B ^ 2 ) ^ 2 ) ) = ( C ^ 2 ) /\ ( ( ( A ^ 2 ) gcd ( B ^ 2 ) ) = 1 /\ -. 2 || ( A ^ 2 ) ) ) -> N e. NN ) |
| 31 |
29 30
|
syl |
|- ( ph -> N e. NN ) |
| 32 |
1
|
pythagtriplem11 |
|- ( ( ( ( A ^ 2 ) e. NN /\ ( B ^ 2 ) e. NN /\ C e. NN ) /\ ( ( ( A ^ 2 ) ^ 2 ) + ( ( B ^ 2 ) ^ 2 ) ) = ( C ^ 2 ) /\ ( ( ( A ^ 2 ) gcd ( B ^ 2 ) ) = 1 /\ -. 2 || ( A ^ 2 ) ) ) -> M e. NN ) |
| 33 |
29 32
|
syl |
|- ( ph -> M e. NN ) |
| 34 |
1 2 3 4 5 6 7 8 9 10
|
flt4lem5a |
|- ( ph -> ( ( A ^ 2 ) + ( N ^ 2 ) ) = ( M ^ 2 ) ) |
| 35 |
31
|
nnzd |
|- ( ph -> N e. ZZ ) |
| 36 |
14 35
|
gcdcomd |
|- ( ph -> ( A gcd N ) = ( N gcd A ) ) |
| 37 |
33
|
nnzd |
|- ( ph -> M e. ZZ ) |
| 38 |
35 37
|
gcdcomd |
|- ( ph -> ( N gcd M ) = ( M gcd N ) ) |
| 39 |
1 2
|
flt4lem5 |
|- ( ( ( ( A ^ 2 ) e. NN /\ ( B ^ 2 ) e. NN /\ C e. NN ) /\ ( ( ( A ^ 2 ) ^ 2 ) + ( ( B ^ 2 ) ^ 2 ) ) = ( C ^ 2 ) /\ ( ( ( A ^ 2 ) gcd ( B ^ 2 ) ) = 1 /\ -. 2 || ( A ^ 2 ) ) ) -> ( M gcd N ) = 1 ) |
| 40 |
29 39
|
syl |
|- ( ph -> ( M gcd N ) = 1 ) |
| 41 |
38 40
|
eqtrd |
|- ( ph -> ( N gcd M ) = 1 ) |
| 42 |
31
|
nnsqcld |
|- ( ph -> ( N ^ 2 ) e. NN ) |
| 43 |
42
|
nncnd |
|- ( ph -> ( N ^ 2 ) e. CC ) |
| 44 |
11
|
nncnd |
|- ( ph -> ( A ^ 2 ) e. CC ) |
| 45 |
43 44
|
addcomd |
|- ( ph -> ( ( N ^ 2 ) + ( A ^ 2 ) ) = ( ( A ^ 2 ) + ( N ^ 2 ) ) ) |
| 46 |
45 34
|
eqtrd |
|- ( ph -> ( ( N ^ 2 ) + ( A ^ 2 ) ) = ( M ^ 2 ) ) |
| 47 |
31 5 33 41 46
|
fltabcoprm |
|- ( ph -> ( N gcd A ) = 1 ) |
| 48 |
36 47
|
eqtrd |
|- ( ph -> ( A gcd N ) = 1 ) |
| 49 |
3 4
|
pythagtriplem16 |
|- ( ( ( A e. NN /\ N e. NN /\ M e. NN ) /\ ( ( A ^ 2 ) + ( N ^ 2 ) ) = ( M ^ 2 ) /\ ( ( A gcd N ) = 1 /\ -. 2 || A ) ) -> N = ( 2 x. ( R x. S ) ) ) |
| 50 |
5 31 33 34 48 8 49
|
syl312anc |
|- ( ph -> N = ( 2 x. ( R x. S ) ) ) |