Step |
Hyp |
Ref |
Expression |
1 |
|
flt4lem5a.m |
|
2 |
|
flt4lem5a.n |
|
3 |
|
flt4lem5a.r |
|
4 |
|
flt4lem5a.s |
|
5 |
|
flt4lem5a.a |
|
6 |
|
flt4lem5a.b |
|
7 |
|
flt4lem5a.c |
|
8 |
|
flt4lem5a.1 |
|
9 |
|
flt4lem5a.2 |
|
10 |
|
flt4lem5a.3 |
|
11 |
5
|
nnsqcld |
|
12 |
6
|
nnsqcld |
|
13 |
|
2prm |
|
14 |
5
|
nnzd |
|
15 |
|
prmdvdssq |
|
16 |
13 14 15
|
sylancr |
|
17 |
8 16
|
mtbid |
|
18 |
|
2nn |
|
19 |
18
|
a1i |
|
20 |
|
rplpwr |
|
21 |
5 7 19 20
|
syl3anc |
|
22 |
9 21
|
mpd |
|
23 |
5
|
nncnd |
|
24 |
23
|
flt4lem |
|
25 |
6
|
nncnd |
|
26 |
25
|
flt4lem |
|
27 |
24 26
|
oveq12d |
|
28 |
27 10
|
eqtr3d |
|
29 |
11 12 7 17 22 28
|
flt4lem1 |
|
30 |
2
|
pythagtriplem13 |
|
31 |
29 30
|
syl |
|
32 |
1
|
pythagtriplem11 |
|
33 |
29 32
|
syl |
|
34 |
1 2 3 4 5 6 7 8 9 10
|
flt4lem5a |
|
35 |
31
|
nnzd |
|
36 |
14 35
|
gcdcomd |
|
37 |
33
|
nnzd |
|
38 |
35 37
|
gcdcomd |
|
39 |
1 2
|
flt4lem5 |
|
40 |
29 39
|
syl |
|
41 |
38 40
|
eqtrd |
|
42 |
31
|
nnsqcld |
|
43 |
42
|
nncnd |
|
44 |
11
|
nncnd |
|
45 |
43 44
|
addcomd |
|
46 |
45 34
|
eqtrd |
|
47 |
31 5 33 41 46
|
fltabcoprm |
|
48 |
36 47
|
eqtrd |
|
49 |
3 4
|
pythagtriplem16 |
|
50 |
5 31 33 34 48 8 49
|
syl312anc |
|