| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							fzennn.1 | 
							 |-  G = ( rec ( ( x e. _V |-> ( x + 1 ) ) , 0 ) |` _om )  | 
						
						
							| 2 | 
							
								
							 | 
							eluzel2 | 
							 |-  ( N e. ( ZZ>= ` M ) -> M e. ZZ )  | 
						
						
							| 3 | 
							
								
							 | 
							eluzelz | 
							 |-  ( N e. ( ZZ>= ` M ) -> N e. ZZ )  | 
						
						
							| 4 | 
							
								
							 | 
							1z | 
							 |-  1 e. ZZ  | 
						
						
							| 5 | 
							
								
							 | 
							zsubcl | 
							 |-  ( ( 1 e. ZZ /\ M e. ZZ ) -> ( 1 - M ) e. ZZ )  | 
						
						
							| 6 | 
							
								4 2 5
							 | 
							sylancr | 
							 |-  ( N e. ( ZZ>= ` M ) -> ( 1 - M ) e. ZZ )  | 
						
						
							| 7 | 
							
								
							 | 
							fzen | 
							 |-  ( ( M e. ZZ /\ N e. ZZ /\ ( 1 - M ) e. ZZ ) -> ( M ... N ) ~~ ( ( M + ( 1 - M ) ) ... ( N + ( 1 - M ) ) ) )  | 
						
						
							| 8 | 
							
								2 3 6 7
							 | 
							syl3anc | 
							 |-  ( N e. ( ZZ>= ` M ) -> ( M ... N ) ~~ ( ( M + ( 1 - M ) ) ... ( N + ( 1 - M ) ) ) )  | 
						
						
							| 9 | 
							
								2
							 | 
							zcnd | 
							 |-  ( N e. ( ZZ>= ` M ) -> M e. CC )  | 
						
						
							| 10 | 
							
								
							 | 
							ax-1cn | 
							 |-  1 e. CC  | 
						
						
							| 11 | 
							
								
							 | 
							pncan3 | 
							 |-  ( ( M e. CC /\ 1 e. CC ) -> ( M + ( 1 - M ) ) = 1 )  | 
						
						
							| 12 | 
							
								9 10 11
							 | 
							sylancl | 
							 |-  ( N e. ( ZZ>= ` M ) -> ( M + ( 1 - M ) ) = 1 )  | 
						
						
							| 13 | 
							
								
							 | 
							zcn | 
							 |-  ( N e. ZZ -> N e. CC )  | 
						
						
							| 14 | 
							
								
							 | 
							zcn | 
							 |-  ( M e. ZZ -> M e. CC )  | 
						
						
							| 15 | 
							
								
							 | 
							addsubass | 
							 |-  ( ( N e. CC /\ 1 e. CC /\ M e. CC ) -> ( ( N + 1 ) - M ) = ( N + ( 1 - M ) ) )  | 
						
						
							| 16 | 
							
								10 15
							 | 
							mp3an2 | 
							 |-  ( ( N e. CC /\ M e. CC ) -> ( ( N + 1 ) - M ) = ( N + ( 1 - M ) ) )  | 
						
						
							| 17 | 
							
								13 14 16
							 | 
							syl2an | 
							 |-  ( ( N e. ZZ /\ M e. ZZ ) -> ( ( N + 1 ) - M ) = ( N + ( 1 - M ) ) )  | 
						
						
							| 18 | 
							
								3 2 17
							 | 
							syl2anc | 
							 |-  ( N e. ( ZZ>= ` M ) -> ( ( N + 1 ) - M ) = ( N + ( 1 - M ) ) )  | 
						
						
							| 19 | 
							
								18
							 | 
							eqcomd | 
							 |-  ( N e. ( ZZ>= ` M ) -> ( N + ( 1 - M ) ) = ( ( N + 1 ) - M ) )  | 
						
						
							| 20 | 
							
								12 19
							 | 
							oveq12d | 
							 |-  ( N e. ( ZZ>= ` M ) -> ( ( M + ( 1 - M ) ) ... ( N + ( 1 - M ) ) ) = ( 1 ... ( ( N + 1 ) - M ) ) )  | 
						
						
							| 21 | 
							
								8 20
							 | 
							breqtrd | 
							 |-  ( N e. ( ZZ>= ` M ) -> ( M ... N ) ~~ ( 1 ... ( ( N + 1 ) - M ) ) )  | 
						
						
							| 22 | 
							
								
							 | 
							peano2uz | 
							 |-  ( N e. ( ZZ>= ` M ) -> ( N + 1 ) e. ( ZZ>= ` M ) )  | 
						
						
							| 23 | 
							
								
							 | 
							uznn0sub | 
							 |-  ( ( N + 1 ) e. ( ZZ>= ` M ) -> ( ( N + 1 ) - M ) e. NN0 )  | 
						
						
							| 24 | 
							
								1
							 | 
							fzennn | 
							 |-  ( ( ( N + 1 ) - M ) e. NN0 -> ( 1 ... ( ( N + 1 ) - M ) ) ~~ ( `' G ` ( ( N + 1 ) - M ) ) )  | 
						
						
							| 25 | 
							
								22 23 24
							 | 
							3syl | 
							 |-  ( N e. ( ZZ>= ` M ) -> ( 1 ... ( ( N + 1 ) - M ) ) ~~ ( `' G ` ( ( N + 1 ) - M ) ) )  | 
						
						
							| 26 | 
							
								
							 | 
							entr | 
							 |-  ( ( ( M ... N ) ~~ ( 1 ... ( ( N + 1 ) - M ) ) /\ ( 1 ... ( ( N + 1 ) - M ) ) ~~ ( `' G ` ( ( N + 1 ) - M ) ) ) -> ( M ... N ) ~~ ( `' G ` ( ( N + 1 ) - M ) ) )  | 
						
						
							| 27 | 
							
								21 25 26
							 | 
							syl2anc | 
							 |-  ( N e. ( ZZ>= ` M ) -> ( M ... N ) ~~ ( `' G ` ( ( N + 1 ) - M ) ) )  |