| Step |
Hyp |
Ref |
Expression |
| 1 |
|
gsummulsubdishift.b |
|- B = ( Base ` R ) |
| 2 |
|
gsummulsubdishift.p |
|- .+ = ( +g ` R ) |
| 3 |
|
gsummulsubdishift.m |
|- .- = ( -g ` R ) |
| 4 |
|
gsummulsubdishift.t |
|- .x. = ( .r ` R ) |
| 5 |
|
gsummulsubdishift.r |
|- ( ph -> R e. Ring ) |
| 6 |
|
gsummulsubdishift.a |
|- ( ph -> A e. B ) |
| 7 |
|
gsummulsubdishift.c |
|- ( ph -> C e. B ) |
| 8 |
|
gsummulsubdishift.n |
|- ( ph -> N e. NN0 ) |
| 9 |
|
gsummulsubdishifts.d |
|- ( ( ph /\ i e. ( 0 ... N ) ) -> V e. B ) |
| 10 |
|
gsummulsubdishift1s.1 |
|- ( i = 0 -> V = G ) |
| 11 |
|
gsummulsubdishift1s.2 |
|- ( i = N -> V = H ) |
| 12 |
|
gsummulsubdishift1s.3 |
|- ( i = k -> V = P ) |
| 13 |
|
gsummulsubdishift1s.4 |
|- ( i = ( k + 1 ) -> V = Q ) |
| 14 |
|
gsummulsubdishift1s.e |
|- ( ph -> E = ( ( H .x. A ) .- ( G .x. C ) ) ) |
| 15 |
|
gsummulsubdishift1s.f |
|- ( ( ph /\ k e. ( 0 ..^ N ) ) -> F = ( ( P .x. A ) .- ( Q .x. C ) ) ) |
| 16 |
12
|
cbvmptv |
|- ( i e. ( 0 ... N ) |-> V ) = ( k e. ( 0 ... N ) |-> P ) |
| 17 |
16
|
oveq2i |
|- ( R gsum ( i e. ( 0 ... N ) |-> V ) ) = ( R gsum ( k e. ( 0 ... N ) |-> P ) ) |
| 18 |
17
|
oveq1i |
|- ( ( R gsum ( i e. ( 0 ... N ) |-> V ) ) .x. ( A .- C ) ) = ( ( R gsum ( k e. ( 0 ... N ) |-> P ) ) .x. ( A .- C ) ) |
| 19 |
9
|
fmpttd |
|- ( ph -> ( i e. ( 0 ... N ) |-> V ) : ( 0 ... N ) --> B ) |
| 20 |
|
eqid |
|- ( i e. ( 0 ... N ) |-> V ) = ( i e. ( 0 ... N ) |-> V ) |
| 21 |
|
nn0fz0 |
|- ( N e. NN0 <-> N e. ( 0 ... N ) ) |
| 22 |
8 21
|
sylib |
|- ( ph -> N e. ( 0 ... N ) ) |
| 23 |
11
|
adantl |
|- ( ( ph /\ i = N ) -> V = H ) |
| 24 |
8 23
|
csbied |
|- ( ph -> [_ N / i ]_ V = H ) |
| 25 |
9
|
ralrimiva |
|- ( ph -> A. i e. ( 0 ... N ) V e. B ) |
| 26 |
|
rspcsbela |
|- ( ( N e. ( 0 ... N ) /\ A. i e. ( 0 ... N ) V e. B ) -> [_ N / i ]_ V e. B ) |
| 27 |
22 25 26
|
syl2anc |
|- ( ph -> [_ N / i ]_ V e. B ) |
| 28 |
24 27
|
eqeltrrd |
|- ( ph -> H e. B ) |
| 29 |
20 11 22 28
|
fvmptd3 |
|- ( ph -> ( ( i e. ( 0 ... N ) |-> V ) ` N ) = H ) |
| 30 |
29
|
oveq1d |
|- ( ph -> ( ( ( i e. ( 0 ... N ) |-> V ) ` N ) .x. A ) = ( H .x. A ) ) |
| 31 |
|
0elfz |
|- ( N e. NN0 -> 0 e. ( 0 ... N ) ) |
| 32 |
8 31
|
syl |
|- ( ph -> 0 e. ( 0 ... N ) ) |
| 33 |
10
|
adantl |
|- ( ( ph /\ i = 0 ) -> V = G ) |
| 34 |
32 33
|
csbied |
|- ( ph -> [_ 0 / i ]_ V = G ) |
| 35 |
|
rspcsbela |
|- ( ( 0 e. ( 0 ... N ) /\ A. i e. ( 0 ... N ) V e. B ) -> [_ 0 / i ]_ V e. B ) |
| 36 |
32 25 35
|
syl2anc |
|- ( ph -> [_ 0 / i ]_ V e. B ) |
| 37 |
34 36
|
eqeltrrd |
|- ( ph -> G e. B ) |
| 38 |
20 10 32 37
|
fvmptd3 |
|- ( ph -> ( ( i e. ( 0 ... N ) |-> V ) ` 0 ) = G ) |
| 39 |
38
|
oveq1d |
|- ( ph -> ( ( ( i e. ( 0 ... N ) |-> V ) ` 0 ) .x. C ) = ( G .x. C ) ) |
| 40 |
30 39
|
oveq12d |
|- ( ph -> ( ( ( ( i e. ( 0 ... N ) |-> V ) ` N ) .x. A ) .- ( ( ( i e. ( 0 ... N ) |-> V ) ` 0 ) .x. C ) ) = ( ( H .x. A ) .- ( G .x. C ) ) ) |
| 41 |
14 40
|
eqtr4d |
|- ( ph -> E = ( ( ( ( i e. ( 0 ... N ) |-> V ) ` N ) .x. A ) .- ( ( ( i e. ( 0 ... N ) |-> V ) ` 0 ) .x. C ) ) ) |
| 42 |
|
fzossfz |
|- ( 0 ..^ N ) C_ ( 0 ... N ) |
| 43 |
|
simpr |
|- ( ( ph /\ k e. ( 0 ..^ N ) ) -> k e. ( 0 ..^ N ) ) |
| 44 |
42 43
|
sselid |
|- ( ( ph /\ k e. ( 0 ..^ N ) ) -> k e. ( 0 ... N ) ) |
| 45 |
12
|
adantl |
|- ( ( ( ph /\ k e. ( 0 ..^ N ) ) /\ i = k ) -> V = P ) |
| 46 |
43 45
|
csbied |
|- ( ( ph /\ k e. ( 0 ..^ N ) ) -> [_ k / i ]_ V = P ) |
| 47 |
25
|
adantr |
|- ( ( ph /\ k e. ( 0 ..^ N ) ) -> A. i e. ( 0 ... N ) V e. B ) |
| 48 |
|
rspcsbela |
|- ( ( k e. ( 0 ... N ) /\ A. i e. ( 0 ... N ) V e. B ) -> [_ k / i ]_ V e. B ) |
| 49 |
44 47 48
|
syl2anc |
|- ( ( ph /\ k e. ( 0 ..^ N ) ) -> [_ k / i ]_ V e. B ) |
| 50 |
46 49
|
eqeltrrd |
|- ( ( ph /\ k e. ( 0 ..^ N ) ) -> P e. B ) |
| 51 |
20 12 44 50
|
fvmptd3 |
|- ( ( ph /\ k e. ( 0 ..^ N ) ) -> ( ( i e. ( 0 ... N ) |-> V ) ` k ) = P ) |
| 52 |
51
|
oveq1d |
|- ( ( ph /\ k e. ( 0 ..^ N ) ) -> ( ( ( i e. ( 0 ... N ) |-> V ) ` k ) .x. A ) = ( P .x. A ) ) |
| 53 |
|
fzofzp1 |
|- ( k e. ( 0 ..^ N ) -> ( k + 1 ) e. ( 0 ... N ) ) |
| 54 |
53
|
adantl |
|- ( ( ph /\ k e. ( 0 ..^ N ) ) -> ( k + 1 ) e. ( 0 ... N ) ) |
| 55 |
13
|
adantl |
|- ( ( ( ph /\ k e. ( 0 ..^ N ) ) /\ i = ( k + 1 ) ) -> V = Q ) |
| 56 |
54 55
|
csbied |
|- ( ( ph /\ k e. ( 0 ..^ N ) ) -> [_ ( k + 1 ) / i ]_ V = Q ) |
| 57 |
|
rspcsbela |
|- ( ( ( k + 1 ) e. ( 0 ... N ) /\ A. i e. ( 0 ... N ) V e. B ) -> [_ ( k + 1 ) / i ]_ V e. B ) |
| 58 |
54 47 57
|
syl2anc |
|- ( ( ph /\ k e. ( 0 ..^ N ) ) -> [_ ( k + 1 ) / i ]_ V e. B ) |
| 59 |
56 58
|
eqeltrrd |
|- ( ( ph /\ k e. ( 0 ..^ N ) ) -> Q e. B ) |
| 60 |
20 13 54 59
|
fvmptd3 |
|- ( ( ph /\ k e. ( 0 ..^ N ) ) -> ( ( i e. ( 0 ... N ) |-> V ) ` ( k + 1 ) ) = Q ) |
| 61 |
60
|
oveq1d |
|- ( ( ph /\ k e. ( 0 ..^ N ) ) -> ( ( ( i e. ( 0 ... N ) |-> V ) ` ( k + 1 ) ) .x. C ) = ( Q .x. C ) ) |
| 62 |
52 61
|
oveq12d |
|- ( ( ph /\ k e. ( 0 ..^ N ) ) -> ( ( ( ( i e. ( 0 ... N ) |-> V ) ` k ) .x. A ) .- ( ( ( i e. ( 0 ... N ) |-> V ) ` ( k + 1 ) ) .x. C ) ) = ( ( P .x. A ) .- ( Q .x. C ) ) ) |
| 63 |
15 62
|
eqtr4d |
|- ( ( ph /\ k e. ( 0 ..^ N ) ) -> F = ( ( ( ( i e. ( 0 ... N ) |-> V ) ` k ) .x. A ) .- ( ( ( i e. ( 0 ... N ) |-> V ) ` ( k + 1 ) ) .x. C ) ) ) |
| 64 |
1 2 3 4 5 6 7 8 19 41 63
|
gsummulsubdishift1 |
|- ( ph -> ( ( R gsum ( i e. ( 0 ... N ) |-> V ) ) .x. ( A .- C ) ) = ( ( R gsum ( k e. ( 0 ..^ N ) |-> F ) ) .+ E ) ) |
| 65 |
18 64
|
eqtr3id |
|- ( ph -> ( ( R gsum ( k e. ( 0 ... N ) |-> P ) ) .x. ( A .- C ) ) = ( ( R gsum ( k e. ( 0 ..^ N ) |-> F ) ) .+ E ) ) |