Metamath Proof Explorer


Theorem gsummulsubdishift1s

Description: Distribute a subtraction over an indexed sum, shift one of the resulting sums, and regroup terms. (Contributed by Thierry Arnoux, 15-Feb-2026)

Ref Expression
Hypotheses gsummulsubdishift.b B = Base R
gsummulsubdishift.p + ˙ = + R
gsummulsubdishift.m - ˙ = - R
gsummulsubdishift.t · ˙ = R
gsummulsubdishift.r φ R Ring
gsummulsubdishift.a φ A B
gsummulsubdishift.c φ C B
gsummulsubdishift.n φ N 0
gsummulsubdishifts.d φ i 0 N V B
gsummulsubdishift1s.1 i = 0 V = G
gsummulsubdishift1s.2 i = N V = H
gsummulsubdishift1s.3 i = k V = P
gsummulsubdishift1s.4 i = k + 1 V = Q
gsummulsubdishift1s.e φ E = H · ˙ A - ˙ G · ˙ C
gsummulsubdishift1s.f φ k 0 ..^ N F = P · ˙ A - ˙ Q · ˙ C
Assertion gsummulsubdishift1s φ R k = 0 N P · ˙ A - ˙ C = R k 0 ..^ N F + ˙ E

Proof

Step Hyp Ref Expression
1 gsummulsubdishift.b B = Base R
2 gsummulsubdishift.p + ˙ = + R
3 gsummulsubdishift.m - ˙ = - R
4 gsummulsubdishift.t · ˙ = R
5 gsummulsubdishift.r φ R Ring
6 gsummulsubdishift.a φ A B
7 gsummulsubdishift.c φ C B
8 gsummulsubdishift.n φ N 0
9 gsummulsubdishifts.d φ i 0 N V B
10 gsummulsubdishift1s.1 i = 0 V = G
11 gsummulsubdishift1s.2 i = N V = H
12 gsummulsubdishift1s.3 i = k V = P
13 gsummulsubdishift1s.4 i = k + 1 V = Q
14 gsummulsubdishift1s.e φ E = H · ˙ A - ˙ G · ˙ C
15 gsummulsubdishift1s.f φ k 0 ..^ N F = P · ˙ A - ˙ Q · ˙ C
16 12 cbvmptv i 0 N V = k 0 N P
17 16 oveq2i R i = 0 N V = R k = 0 N P
18 17 oveq1i R i = 0 N V · ˙ A - ˙ C = R k = 0 N P · ˙ A - ˙ C
19 9 fmpttd φ i 0 N V : 0 N B
20 eqid i 0 N V = i 0 N V
21 nn0fz0 N 0 N 0 N
22 8 21 sylib φ N 0 N
23 11 adantl φ i = N V = H
24 8 23 csbied φ N / i V = H
25 9 ralrimiva φ i 0 N V B
26 rspcsbela N 0 N i 0 N V B N / i V B
27 22 25 26 syl2anc φ N / i V B
28 24 27 eqeltrrd φ H B
29 20 11 22 28 fvmptd3 φ i 0 N V N = H
30 29 oveq1d φ i 0 N V N · ˙ A = H · ˙ A
31 0elfz N 0 0 0 N
32 8 31 syl φ 0 0 N
33 10 adantl φ i = 0 V = G
34 32 33 csbied φ 0 / i V = G
35 rspcsbela 0 0 N i 0 N V B 0 / i V B
36 32 25 35 syl2anc φ 0 / i V B
37 34 36 eqeltrrd φ G B
38 20 10 32 37 fvmptd3 φ i 0 N V 0 = G
39 38 oveq1d φ i 0 N V 0 · ˙ C = G · ˙ C
40 30 39 oveq12d φ i 0 N V N · ˙ A - ˙ i 0 N V 0 · ˙ C = H · ˙ A - ˙ G · ˙ C
41 14 40 eqtr4d φ E = i 0 N V N · ˙ A - ˙ i 0 N V 0 · ˙ C
42 fzossfz 0 ..^ N 0 N
43 simpr φ k 0 ..^ N k 0 ..^ N
44 42 43 sselid φ k 0 ..^ N k 0 N
45 12 adantl φ k 0 ..^ N i = k V = P
46 43 45 csbied φ k 0 ..^ N k / i V = P
47 25 adantr φ k 0 ..^ N i 0 N V B
48 rspcsbela k 0 N i 0 N V B k / i V B
49 44 47 48 syl2anc φ k 0 ..^ N k / i V B
50 46 49 eqeltrrd φ k 0 ..^ N P B
51 20 12 44 50 fvmptd3 φ k 0 ..^ N i 0 N V k = P
52 51 oveq1d φ k 0 ..^ N i 0 N V k · ˙ A = P · ˙ A
53 fzofzp1 k 0 ..^ N k + 1 0 N
54 53 adantl φ k 0 ..^ N k + 1 0 N
55 13 adantl φ k 0 ..^ N i = k + 1 V = Q
56 54 55 csbied φ k 0 ..^ N k + 1 / i V = Q
57 rspcsbela k + 1 0 N i 0 N V B k + 1 / i V B
58 54 47 57 syl2anc φ k 0 ..^ N k + 1 / i V B
59 56 58 eqeltrrd φ k 0 ..^ N Q B
60 20 13 54 59 fvmptd3 φ k 0 ..^ N i 0 N V k + 1 = Q
61 60 oveq1d φ k 0 ..^ N i 0 N V k + 1 · ˙ C = Q · ˙ C
62 52 61 oveq12d φ k 0 ..^ N i 0 N V k · ˙ A - ˙ i 0 N V k + 1 · ˙ C = P · ˙ A - ˙ Q · ˙ C
63 15 62 eqtr4d φ k 0 ..^ N F = i 0 N V k · ˙ A - ˙ i 0 N V k + 1 · ˙ C
64 1 2 3 4 5 6 7 8 19 41 63 gsummulsubdishift1 φ R i = 0 N V · ˙ A - ˙ C = R k 0 ..^ N F + ˙ E
65 18 64 eqtr3id φ R k = 0 N P · ˙ A - ˙ C = R k 0 ..^ N F + ˙ E