Metamath Proof Explorer


Theorem gsummulsubdishift2s

Description: Distribute a subtraction over an indexed sum, shift one of the resulting sums, and regroup terms. (Contributed by Thierry Arnoux, 15-Feb-2026)

Ref Expression
Hypotheses gsummulsubdishift.b B = Base R
gsummulsubdishift.p + ˙ = + R
gsummulsubdishift.m - ˙ = - R
gsummulsubdishift.t · ˙ = R
gsummulsubdishift.r φ R Ring
gsummulsubdishift.a φ A B
gsummulsubdishift.c φ C B
gsummulsubdishift.n φ N 0
gsummulsubdishifts.d φ i 0 N V B
gsummulsubdishift2s.1 i = 0 V = G
gsummulsubdishift2s.2 i = N V = H
gsummulsubdishift2s.3 i = k V = P
gsummulsubdishift2s.4 i = k + 1 V = Q
gsummulsubdishift2s.e φ E = G · ˙ A - ˙ H · ˙ C
gsummulsubdishift2s.f φ k 0 ..^ N F = Q · ˙ A - ˙ P · ˙ C
Assertion gsummulsubdishift2s φ R k = 0 N P · ˙ A - ˙ C = R k 0 ..^ N F + ˙ E

Proof

Step Hyp Ref Expression
1 gsummulsubdishift.b B = Base R
2 gsummulsubdishift.p + ˙ = + R
3 gsummulsubdishift.m - ˙ = - R
4 gsummulsubdishift.t · ˙ = R
5 gsummulsubdishift.r φ R Ring
6 gsummulsubdishift.a φ A B
7 gsummulsubdishift.c φ C B
8 gsummulsubdishift.n φ N 0
9 gsummulsubdishifts.d φ i 0 N V B
10 gsummulsubdishift2s.1 i = 0 V = G
11 gsummulsubdishift2s.2 i = N V = H
12 gsummulsubdishift2s.3 i = k V = P
13 gsummulsubdishift2s.4 i = k + 1 V = Q
14 gsummulsubdishift2s.e φ E = G · ˙ A - ˙ H · ˙ C
15 gsummulsubdishift2s.f φ k 0 ..^ N F = Q · ˙ A - ˙ P · ˙ C
16 12 cbvmptv i 0 N V = k 0 N P
17 16 oveq2i R i = 0 N V = R k = 0 N P
18 17 oveq1i R i = 0 N V · ˙ A - ˙ C = R k = 0 N P · ˙ A - ˙ C
19 9 fmpttd φ i 0 N V : 0 N B
20 eqid i 0 N V = i 0 N V
21 0elfz N 0 0 0 N
22 8 21 syl φ 0 0 N
23 c0ex 0 V
24 23 10 csbie 0 / i V = G
25 9 ralrimiva φ i 0 N V B
26 rspcsbela 0 0 N i 0 N V B 0 / i V B
27 22 25 26 syl2anc φ 0 / i V B
28 24 27 eqeltrrid φ G B
29 20 10 22 28 fvmptd3 φ i 0 N V 0 = G
30 29 oveq1d φ i 0 N V 0 · ˙ A = G · ˙ A
31 nn0fz0 N 0 N 0 N
32 8 31 sylib φ N 0 N
33 11 adantl φ i = N V = H
34 8 33 csbied φ N / i V = H
35 rspcsbela N 0 N i 0 N V B N / i V B
36 32 25 35 syl2anc φ N / i V B
37 34 36 eqeltrrd φ H B
38 20 11 32 37 fvmptd3 φ i 0 N V N = H
39 38 oveq1d φ i 0 N V N · ˙ C = H · ˙ C
40 30 39 oveq12d φ i 0 N V 0 · ˙ A - ˙ i 0 N V N · ˙ C = G · ˙ A - ˙ H · ˙ C
41 14 40 eqtr4d φ E = i 0 N V 0 · ˙ A - ˙ i 0 N V N · ˙ C
42 fzofzp1 k 0 ..^ N k + 1 0 N
43 42 adantl φ k 0 ..^ N k + 1 0 N
44 13 adantl φ k 0 ..^ N i = k + 1 V = Q
45 43 44 csbied φ k 0 ..^ N k + 1 / i V = Q
46 25 adantr φ k 0 ..^ N i 0 N V B
47 rspcsbela k + 1 0 N i 0 N V B k + 1 / i V B
48 43 46 47 syl2anc φ k 0 ..^ N k + 1 / i V B
49 45 48 eqeltrrd φ k 0 ..^ N Q B
50 20 13 43 49 fvmptd3 φ k 0 ..^ N i 0 N V k + 1 = Q
51 50 oveq1d φ k 0 ..^ N i 0 N V k + 1 · ˙ A = Q · ˙ A
52 fzossfz 0 ..^ N 0 N
53 simpr φ k 0 ..^ N k 0 ..^ N
54 52 53 sselid φ k 0 ..^ N k 0 N
55 12 adantl φ k 0 ..^ N i = k V = P
56 53 55 csbied φ k 0 ..^ N k / i V = P
57 rspcsbela k 0 N i 0 N V B k / i V B
58 54 46 57 syl2anc φ k 0 ..^ N k / i V B
59 56 58 eqeltrrd φ k 0 ..^ N P B
60 20 12 54 59 fvmptd3 φ k 0 ..^ N i 0 N V k = P
61 60 oveq1d φ k 0 ..^ N i 0 N V k · ˙ C = P · ˙ C
62 51 61 oveq12d φ k 0 ..^ N i 0 N V k + 1 · ˙ A - ˙ i 0 N V k · ˙ C = Q · ˙ A - ˙ P · ˙ C
63 15 62 eqtr4d φ k 0 ..^ N F = i 0 N V k + 1 · ˙ A - ˙ i 0 N V k · ˙ C
64 1 2 3 4 5 6 7 8 19 41 63 gsummulsubdishift2 φ R i = 0 N V · ˙ A - ˙ C = R k 0 ..^ N F + ˙ E
65 18 64 eqtr3id φ R k = 0 N P · ˙ A - ˙ C = R k 0 ..^ N F + ˙ E