| Step |
Hyp |
Ref |
Expression |
| 1 |
|
gsummulsubdishift.b |
|
| 2 |
|
gsummulsubdishift.p |
|
| 3 |
|
gsummulsubdishift.m |
|
| 4 |
|
gsummulsubdishift.t |
|
| 5 |
|
gsummulsubdishift.r |
|
| 6 |
|
gsummulsubdishift.a |
|
| 7 |
|
gsummulsubdishift.c |
|
| 8 |
|
gsummulsubdishift.n |
|
| 9 |
|
gsummulsubdishifts.d |
|
| 10 |
|
gsummulsubdishift2s.1 |
|
| 11 |
|
gsummulsubdishift2s.2 |
|
| 12 |
|
gsummulsubdishift2s.3 |
|
| 13 |
|
gsummulsubdishift2s.4 |
|
| 14 |
|
gsummulsubdishift2s.e |
|
| 15 |
|
gsummulsubdishift2s.f |
|
| 16 |
12
|
cbvmptv |
|
| 17 |
16
|
oveq2i |
|
| 18 |
17
|
oveq1i |
|
| 19 |
9
|
fmpttd |
|
| 20 |
|
eqid |
|
| 21 |
|
0elfz |
|
| 22 |
8 21
|
syl |
|
| 23 |
|
c0ex |
|
| 24 |
23 10
|
csbie |
|
| 25 |
9
|
ralrimiva |
|
| 26 |
|
rspcsbela |
|
| 27 |
22 25 26
|
syl2anc |
|
| 28 |
24 27
|
eqeltrrid |
|
| 29 |
20 10 22 28
|
fvmptd3 |
|
| 30 |
29
|
oveq1d |
|
| 31 |
|
nn0fz0 |
|
| 32 |
8 31
|
sylib |
|
| 33 |
11
|
adantl |
|
| 34 |
8 33
|
csbied |
|
| 35 |
|
rspcsbela |
|
| 36 |
32 25 35
|
syl2anc |
|
| 37 |
34 36
|
eqeltrrd |
|
| 38 |
20 11 32 37
|
fvmptd3 |
|
| 39 |
38
|
oveq1d |
|
| 40 |
30 39
|
oveq12d |
|
| 41 |
14 40
|
eqtr4d |
|
| 42 |
|
fzofzp1 |
|
| 43 |
42
|
adantl |
|
| 44 |
13
|
adantl |
|
| 45 |
43 44
|
csbied |
|
| 46 |
25
|
adantr |
|
| 47 |
|
rspcsbela |
|
| 48 |
43 46 47
|
syl2anc |
|
| 49 |
45 48
|
eqeltrrd |
|
| 50 |
20 13 43 49
|
fvmptd3 |
|
| 51 |
50
|
oveq1d |
|
| 52 |
|
fzossfz |
|
| 53 |
|
simpr |
|
| 54 |
52 53
|
sselid |
|
| 55 |
12
|
adantl |
|
| 56 |
53 55
|
csbied |
|
| 57 |
|
rspcsbela |
|
| 58 |
54 46 57
|
syl2anc |
|
| 59 |
56 58
|
eqeltrrd |
|
| 60 |
20 12 54 59
|
fvmptd3 |
|
| 61 |
60
|
oveq1d |
|
| 62 |
51 61
|
oveq12d |
|
| 63 |
15 62
|
eqtr4d |
|
| 64 |
1 2 3 4 5 6 7 8 19 41 63
|
gsummulsubdishift2 |
|
| 65 |
18 64
|
eqtr3id |
|