| Step |
Hyp |
Ref |
Expression |
| 1 |
|
gsummulsubdishift.b |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
| 2 |
|
gsummulsubdishift.p |
⊢ + = ( +g ‘ 𝑅 ) |
| 3 |
|
gsummulsubdishift.m |
⊢ − = ( -g ‘ 𝑅 ) |
| 4 |
|
gsummulsubdishift.t |
⊢ · = ( .r ‘ 𝑅 ) |
| 5 |
|
gsummulsubdishift.r |
⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
| 6 |
|
gsummulsubdishift.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝐵 ) |
| 7 |
|
gsummulsubdishift.c |
⊢ ( 𝜑 → 𝐶 ∈ 𝐵 ) |
| 8 |
|
gsummulsubdishift.n |
⊢ ( 𝜑 → 𝑁 ∈ ℕ0 ) |
| 9 |
|
gsummulsubdishifts.d |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑁 ) ) → 𝑉 ∈ 𝐵 ) |
| 10 |
|
gsummulsubdishift2s.1 |
⊢ ( 𝑖 = 0 → 𝑉 = 𝐺 ) |
| 11 |
|
gsummulsubdishift2s.2 |
⊢ ( 𝑖 = 𝑁 → 𝑉 = 𝐻 ) |
| 12 |
|
gsummulsubdishift2s.3 |
⊢ ( 𝑖 = 𝑘 → 𝑉 = 𝑃 ) |
| 13 |
|
gsummulsubdishift2s.4 |
⊢ ( 𝑖 = ( 𝑘 + 1 ) → 𝑉 = 𝑄 ) |
| 14 |
|
gsummulsubdishift2s.e |
⊢ ( 𝜑 → 𝐸 = ( ( 𝐺 · 𝐴 ) − ( 𝐻 · 𝐶 ) ) ) |
| 15 |
|
gsummulsubdishift2s.f |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ..^ 𝑁 ) ) → 𝐹 = ( ( 𝑄 · 𝐴 ) − ( 𝑃 · 𝐶 ) ) ) |
| 16 |
12
|
cbvmptv |
⊢ ( 𝑖 ∈ ( 0 ... 𝑁 ) ↦ 𝑉 ) = ( 𝑘 ∈ ( 0 ... 𝑁 ) ↦ 𝑃 ) |
| 17 |
16
|
oveq2i |
⊢ ( 𝑅 Σg ( 𝑖 ∈ ( 0 ... 𝑁 ) ↦ 𝑉 ) ) = ( 𝑅 Σg ( 𝑘 ∈ ( 0 ... 𝑁 ) ↦ 𝑃 ) ) |
| 18 |
17
|
oveq1i |
⊢ ( ( 𝑅 Σg ( 𝑖 ∈ ( 0 ... 𝑁 ) ↦ 𝑉 ) ) · ( 𝐴 − 𝐶 ) ) = ( ( 𝑅 Σg ( 𝑘 ∈ ( 0 ... 𝑁 ) ↦ 𝑃 ) ) · ( 𝐴 − 𝐶 ) ) |
| 19 |
9
|
fmpttd |
⊢ ( 𝜑 → ( 𝑖 ∈ ( 0 ... 𝑁 ) ↦ 𝑉 ) : ( 0 ... 𝑁 ) ⟶ 𝐵 ) |
| 20 |
|
eqid |
⊢ ( 𝑖 ∈ ( 0 ... 𝑁 ) ↦ 𝑉 ) = ( 𝑖 ∈ ( 0 ... 𝑁 ) ↦ 𝑉 ) |
| 21 |
|
0elfz |
⊢ ( 𝑁 ∈ ℕ0 → 0 ∈ ( 0 ... 𝑁 ) ) |
| 22 |
8 21
|
syl |
⊢ ( 𝜑 → 0 ∈ ( 0 ... 𝑁 ) ) |
| 23 |
|
c0ex |
⊢ 0 ∈ V |
| 24 |
23 10
|
csbie |
⊢ ⦋ 0 / 𝑖 ⦌ 𝑉 = 𝐺 |
| 25 |
9
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑖 ∈ ( 0 ... 𝑁 ) 𝑉 ∈ 𝐵 ) |
| 26 |
|
rspcsbela |
⊢ ( ( 0 ∈ ( 0 ... 𝑁 ) ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) 𝑉 ∈ 𝐵 ) → ⦋ 0 / 𝑖 ⦌ 𝑉 ∈ 𝐵 ) |
| 27 |
22 25 26
|
syl2anc |
⊢ ( 𝜑 → ⦋ 0 / 𝑖 ⦌ 𝑉 ∈ 𝐵 ) |
| 28 |
24 27
|
eqeltrrid |
⊢ ( 𝜑 → 𝐺 ∈ 𝐵 ) |
| 29 |
20 10 22 28
|
fvmptd3 |
⊢ ( 𝜑 → ( ( 𝑖 ∈ ( 0 ... 𝑁 ) ↦ 𝑉 ) ‘ 0 ) = 𝐺 ) |
| 30 |
29
|
oveq1d |
⊢ ( 𝜑 → ( ( ( 𝑖 ∈ ( 0 ... 𝑁 ) ↦ 𝑉 ) ‘ 0 ) · 𝐴 ) = ( 𝐺 · 𝐴 ) ) |
| 31 |
|
nn0fz0 |
⊢ ( 𝑁 ∈ ℕ0 ↔ 𝑁 ∈ ( 0 ... 𝑁 ) ) |
| 32 |
8 31
|
sylib |
⊢ ( 𝜑 → 𝑁 ∈ ( 0 ... 𝑁 ) ) |
| 33 |
11
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑖 = 𝑁 ) → 𝑉 = 𝐻 ) |
| 34 |
8 33
|
csbied |
⊢ ( 𝜑 → ⦋ 𝑁 / 𝑖 ⦌ 𝑉 = 𝐻 ) |
| 35 |
|
rspcsbela |
⊢ ( ( 𝑁 ∈ ( 0 ... 𝑁 ) ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) 𝑉 ∈ 𝐵 ) → ⦋ 𝑁 / 𝑖 ⦌ 𝑉 ∈ 𝐵 ) |
| 36 |
32 25 35
|
syl2anc |
⊢ ( 𝜑 → ⦋ 𝑁 / 𝑖 ⦌ 𝑉 ∈ 𝐵 ) |
| 37 |
34 36
|
eqeltrrd |
⊢ ( 𝜑 → 𝐻 ∈ 𝐵 ) |
| 38 |
20 11 32 37
|
fvmptd3 |
⊢ ( 𝜑 → ( ( 𝑖 ∈ ( 0 ... 𝑁 ) ↦ 𝑉 ) ‘ 𝑁 ) = 𝐻 ) |
| 39 |
38
|
oveq1d |
⊢ ( 𝜑 → ( ( ( 𝑖 ∈ ( 0 ... 𝑁 ) ↦ 𝑉 ) ‘ 𝑁 ) · 𝐶 ) = ( 𝐻 · 𝐶 ) ) |
| 40 |
30 39
|
oveq12d |
⊢ ( 𝜑 → ( ( ( ( 𝑖 ∈ ( 0 ... 𝑁 ) ↦ 𝑉 ) ‘ 0 ) · 𝐴 ) − ( ( ( 𝑖 ∈ ( 0 ... 𝑁 ) ↦ 𝑉 ) ‘ 𝑁 ) · 𝐶 ) ) = ( ( 𝐺 · 𝐴 ) − ( 𝐻 · 𝐶 ) ) ) |
| 41 |
14 40
|
eqtr4d |
⊢ ( 𝜑 → 𝐸 = ( ( ( ( 𝑖 ∈ ( 0 ... 𝑁 ) ↦ 𝑉 ) ‘ 0 ) · 𝐴 ) − ( ( ( 𝑖 ∈ ( 0 ... 𝑁 ) ↦ 𝑉 ) ‘ 𝑁 ) · 𝐶 ) ) ) |
| 42 |
|
fzofzp1 |
⊢ ( 𝑘 ∈ ( 0 ..^ 𝑁 ) → ( 𝑘 + 1 ) ∈ ( 0 ... 𝑁 ) ) |
| 43 |
42
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ..^ 𝑁 ) ) → ( 𝑘 + 1 ) ∈ ( 0 ... 𝑁 ) ) |
| 44 |
13
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ..^ 𝑁 ) ) ∧ 𝑖 = ( 𝑘 + 1 ) ) → 𝑉 = 𝑄 ) |
| 45 |
43 44
|
csbied |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ..^ 𝑁 ) ) → ⦋ ( 𝑘 + 1 ) / 𝑖 ⦌ 𝑉 = 𝑄 ) |
| 46 |
25
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ..^ 𝑁 ) ) → ∀ 𝑖 ∈ ( 0 ... 𝑁 ) 𝑉 ∈ 𝐵 ) |
| 47 |
|
rspcsbela |
⊢ ( ( ( 𝑘 + 1 ) ∈ ( 0 ... 𝑁 ) ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) 𝑉 ∈ 𝐵 ) → ⦋ ( 𝑘 + 1 ) / 𝑖 ⦌ 𝑉 ∈ 𝐵 ) |
| 48 |
43 46 47
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ..^ 𝑁 ) ) → ⦋ ( 𝑘 + 1 ) / 𝑖 ⦌ 𝑉 ∈ 𝐵 ) |
| 49 |
45 48
|
eqeltrrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ..^ 𝑁 ) ) → 𝑄 ∈ 𝐵 ) |
| 50 |
20 13 43 49
|
fvmptd3 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ..^ 𝑁 ) ) → ( ( 𝑖 ∈ ( 0 ... 𝑁 ) ↦ 𝑉 ) ‘ ( 𝑘 + 1 ) ) = 𝑄 ) |
| 51 |
50
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ..^ 𝑁 ) ) → ( ( ( 𝑖 ∈ ( 0 ... 𝑁 ) ↦ 𝑉 ) ‘ ( 𝑘 + 1 ) ) · 𝐴 ) = ( 𝑄 · 𝐴 ) ) |
| 52 |
|
fzossfz |
⊢ ( 0 ..^ 𝑁 ) ⊆ ( 0 ... 𝑁 ) |
| 53 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ..^ 𝑁 ) ) → 𝑘 ∈ ( 0 ..^ 𝑁 ) ) |
| 54 |
52 53
|
sselid |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ..^ 𝑁 ) ) → 𝑘 ∈ ( 0 ... 𝑁 ) ) |
| 55 |
12
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ..^ 𝑁 ) ) ∧ 𝑖 = 𝑘 ) → 𝑉 = 𝑃 ) |
| 56 |
53 55
|
csbied |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ..^ 𝑁 ) ) → ⦋ 𝑘 / 𝑖 ⦌ 𝑉 = 𝑃 ) |
| 57 |
|
rspcsbela |
⊢ ( ( 𝑘 ∈ ( 0 ... 𝑁 ) ∧ ∀ 𝑖 ∈ ( 0 ... 𝑁 ) 𝑉 ∈ 𝐵 ) → ⦋ 𝑘 / 𝑖 ⦌ 𝑉 ∈ 𝐵 ) |
| 58 |
54 46 57
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ..^ 𝑁 ) ) → ⦋ 𝑘 / 𝑖 ⦌ 𝑉 ∈ 𝐵 ) |
| 59 |
56 58
|
eqeltrrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ..^ 𝑁 ) ) → 𝑃 ∈ 𝐵 ) |
| 60 |
20 12 54 59
|
fvmptd3 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ..^ 𝑁 ) ) → ( ( 𝑖 ∈ ( 0 ... 𝑁 ) ↦ 𝑉 ) ‘ 𝑘 ) = 𝑃 ) |
| 61 |
60
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ..^ 𝑁 ) ) → ( ( ( 𝑖 ∈ ( 0 ... 𝑁 ) ↦ 𝑉 ) ‘ 𝑘 ) · 𝐶 ) = ( 𝑃 · 𝐶 ) ) |
| 62 |
51 61
|
oveq12d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ..^ 𝑁 ) ) → ( ( ( ( 𝑖 ∈ ( 0 ... 𝑁 ) ↦ 𝑉 ) ‘ ( 𝑘 + 1 ) ) · 𝐴 ) − ( ( ( 𝑖 ∈ ( 0 ... 𝑁 ) ↦ 𝑉 ) ‘ 𝑘 ) · 𝐶 ) ) = ( ( 𝑄 · 𝐴 ) − ( 𝑃 · 𝐶 ) ) ) |
| 63 |
15 62
|
eqtr4d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ..^ 𝑁 ) ) → 𝐹 = ( ( ( ( 𝑖 ∈ ( 0 ... 𝑁 ) ↦ 𝑉 ) ‘ ( 𝑘 + 1 ) ) · 𝐴 ) − ( ( ( 𝑖 ∈ ( 0 ... 𝑁 ) ↦ 𝑉 ) ‘ 𝑘 ) · 𝐶 ) ) ) |
| 64 |
1 2 3 4 5 6 7 8 19 41 63
|
gsummulsubdishift2 |
⊢ ( 𝜑 → ( ( 𝑅 Σg ( 𝑖 ∈ ( 0 ... 𝑁 ) ↦ 𝑉 ) ) · ( 𝐴 − 𝐶 ) ) = ( ( 𝑅 Σg ( 𝑘 ∈ ( 0 ..^ 𝑁 ) ↦ 𝐹 ) ) + 𝐸 ) ) |
| 65 |
18 64
|
eqtr3id |
⊢ ( 𝜑 → ( ( 𝑅 Σg ( 𝑘 ∈ ( 0 ... 𝑁 ) ↦ 𝑃 ) ) · ( 𝐴 − 𝐶 ) ) = ( ( 𝑅 Σg ( 𝑘 ∈ ( 0 ..^ 𝑁 ) ↦ 𝐹 ) ) + 𝐸 ) ) |