| Step |
Hyp |
Ref |
Expression |
| 1 |
|
gsummulsubdishift.b |
|- B = ( Base ` R ) |
| 2 |
|
gsummulsubdishift.p |
|- .+ = ( +g ` R ) |
| 3 |
|
gsummulsubdishift.m |
|- .- = ( -g ` R ) |
| 4 |
|
gsummulsubdishift.t |
|- .x. = ( .r ` R ) |
| 5 |
|
gsummulsubdishift.r |
|- ( ph -> R e. Ring ) |
| 6 |
|
gsummulsubdishift.a |
|- ( ph -> A e. B ) |
| 7 |
|
gsummulsubdishift.c |
|- ( ph -> C e. B ) |
| 8 |
|
gsummulsubdishift.n |
|- ( ph -> N e. NN0 ) |
| 9 |
|
gsummulsubdishift.d |
|- ( ph -> D : ( 0 ... N ) --> B ) |
| 10 |
|
gsummulsubdishift1.e |
|- ( ph -> E = ( ( ( D ` N ) .x. A ) .- ( ( D ` 0 ) .x. C ) ) ) |
| 11 |
|
gsummulsubdishift1.f |
|- ( ( ph /\ k e. ( 0 ..^ N ) ) -> F = ( ( ( D ` k ) .x. A ) .- ( ( D ` ( k + 1 ) ) .x. C ) ) ) |
| 12 |
5
|
ringcmnd |
|- ( ph -> R e. CMnd ) |
| 13 |
|
fzfid |
|- ( ph -> ( 0 ... N ) e. Fin ) |
| 14 |
9
|
ffvelcdmda |
|- ( ( ph /\ k e. ( 0 ... N ) ) -> ( D ` k ) e. B ) |
| 15 |
14
|
ralrimiva |
|- ( ph -> A. k e. ( 0 ... N ) ( D ` k ) e. B ) |
| 16 |
1 12 13 15
|
gsummptcl |
|- ( ph -> ( R gsum ( k e. ( 0 ... N ) |-> ( D ` k ) ) ) e. B ) |
| 17 |
1 4 3 5 16 6 7
|
ringsubdi |
|- ( ph -> ( ( R gsum ( k e. ( 0 ... N ) |-> ( D ` k ) ) ) .x. ( A .- C ) ) = ( ( ( R gsum ( k e. ( 0 ... N ) |-> ( D ` k ) ) ) .x. A ) .- ( ( R gsum ( k e. ( 0 ... N ) |-> ( D ` k ) ) ) .x. C ) ) ) |
| 18 |
|
nn0uz |
|- NN0 = ( ZZ>= ` 0 ) |
| 19 |
8 18
|
eleqtrdi |
|- ( ph -> N e. ( ZZ>= ` 0 ) ) |
| 20 |
|
fzisfzounsn |
|- ( N e. ( ZZ>= ` 0 ) -> ( 0 ... N ) = ( ( 0 ..^ N ) u. { N } ) ) |
| 21 |
19 20
|
syl |
|- ( ph -> ( 0 ... N ) = ( ( 0 ..^ N ) u. { N } ) ) |
| 22 |
21
|
mpteq1d |
|- ( ph -> ( k e. ( 0 ... N ) |-> ( ( D ` k ) .x. A ) ) = ( k e. ( ( 0 ..^ N ) u. { N } ) |-> ( ( D ` k ) .x. A ) ) ) |
| 23 |
22
|
oveq2d |
|- ( ph -> ( R gsum ( k e. ( 0 ... N ) |-> ( ( D ` k ) .x. A ) ) ) = ( R gsum ( k e. ( ( 0 ..^ N ) u. { N } ) |-> ( ( D ` k ) .x. A ) ) ) ) |
| 24 |
|
eqid |
|- ( 0g ` R ) = ( 0g ` R ) |
| 25 |
|
eqid |
|- ( k e. ( 0 ... N ) |-> ( D ` k ) ) = ( k e. ( 0 ... N ) |-> ( D ` k ) ) |
| 26 |
|
fvexd |
|- ( ph -> ( 0g ` R ) e. _V ) |
| 27 |
25 13 14 26
|
fsuppmptdm |
|- ( ph -> ( k e. ( 0 ... N ) |-> ( D ` k ) ) finSupp ( 0g ` R ) ) |
| 28 |
1 24 4 5 13 6 14 27
|
gsummulc1 |
|- ( ph -> ( R gsum ( k e. ( 0 ... N ) |-> ( ( D ` k ) .x. A ) ) ) = ( ( R gsum ( k e. ( 0 ... N ) |-> ( D ` k ) ) ) .x. A ) ) |
| 29 |
|
fzofi |
|- ( 0 ..^ N ) e. Fin |
| 30 |
29
|
a1i |
|- ( ph -> ( 0 ..^ N ) e. Fin ) |
| 31 |
5
|
adantr |
|- ( ( ph /\ k e. ( 0 ..^ N ) ) -> R e. Ring ) |
| 32 |
|
fzossfz |
|- ( 0 ..^ N ) C_ ( 0 ... N ) |
| 33 |
32
|
a1i |
|- ( ph -> ( 0 ..^ N ) C_ ( 0 ... N ) ) |
| 34 |
33
|
sselda |
|- ( ( ph /\ k e. ( 0 ..^ N ) ) -> k e. ( 0 ... N ) ) |
| 35 |
34 14
|
syldan |
|- ( ( ph /\ k e. ( 0 ..^ N ) ) -> ( D ` k ) e. B ) |
| 36 |
6
|
adantr |
|- ( ( ph /\ k e. ( 0 ..^ N ) ) -> A e. B ) |
| 37 |
1 4 31 35 36
|
ringcld |
|- ( ( ph /\ k e. ( 0 ..^ N ) ) -> ( ( D ` k ) .x. A ) e. B ) |
| 38 |
|
fzonel |
|- -. N e. ( 0 ..^ N ) |
| 39 |
38
|
a1i |
|- ( ph -> -. N e. ( 0 ..^ N ) ) |
| 40 |
|
nn0fz0 |
|- ( N e. NN0 <-> N e. ( 0 ... N ) ) |
| 41 |
8 40
|
sylib |
|- ( ph -> N e. ( 0 ... N ) ) |
| 42 |
9 41
|
ffvelcdmd |
|- ( ph -> ( D ` N ) e. B ) |
| 43 |
1 4 5 42 6
|
ringcld |
|- ( ph -> ( ( D ` N ) .x. A ) e. B ) |
| 44 |
|
fveq2 |
|- ( k = N -> ( D ` k ) = ( D ` N ) ) |
| 45 |
44
|
oveq1d |
|- ( k = N -> ( ( D ` k ) .x. A ) = ( ( D ` N ) .x. A ) ) |
| 46 |
1 2 12 30 37 8 39 43 45
|
gsumunsn |
|- ( ph -> ( R gsum ( k e. ( ( 0 ..^ N ) u. { N } ) |-> ( ( D ` k ) .x. A ) ) ) = ( ( R gsum ( k e. ( 0 ..^ N ) |-> ( ( D ` k ) .x. A ) ) ) .+ ( ( D ` N ) .x. A ) ) ) |
| 47 |
23 28 46
|
3eqtr3d |
|- ( ph -> ( ( R gsum ( k e. ( 0 ... N ) |-> ( D ` k ) ) ) .x. A ) = ( ( R gsum ( k e. ( 0 ..^ N ) |-> ( ( D ` k ) .x. A ) ) ) .+ ( ( D ` N ) .x. A ) ) ) |
| 48 |
1 24 4 5 13 7 14 27
|
gsummulc1 |
|- ( ph -> ( R gsum ( k e. ( 0 ... N ) |-> ( ( D ` k ) .x. C ) ) ) = ( ( R gsum ( k e. ( 0 ... N ) |-> ( D ` k ) ) ) .x. C ) ) |
| 49 |
|
fz0sn0fz1 |
|- ( N e. NN0 -> ( 0 ... N ) = ( { 0 } u. ( 1 ... N ) ) ) |
| 50 |
8 49
|
syl |
|- ( ph -> ( 0 ... N ) = ( { 0 } u. ( 1 ... N ) ) ) |
| 51 |
|
uncom |
|- ( ( 1 ... N ) u. { 0 } ) = ( { 0 } u. ( 1 ... N ) ) |
| 52 |
50 51
|
eqtr4di |
|- ( ph -> ( 0 ... N ) = ( ( 1 ... N ) u. { 0 } ) ) |
| 53 |
52
|
mpteq1d |
|- ( ph -> ( k e. ( 0 ... N ) |-> ( ( D ` k ) .x. C ) ) = ( k e. ( ( 1 ... N ) u. { 0 } ) |-> ( ( D ` k ) .x. C ) ) ) |
| 54 |
53
|
oveq2d |
|- ( ph -> ( R gsum ( k e. ( 0 ... N ) |-> ( ( D ` k ) .x. C ) ) ) = ( R gsum ( k e. ( ( 1 ... N ) u. { 0 } ) |-> ( ( D ` k ) .x. C ) ) ) ) |
| 55 |
|
fzfid |
|- ( ph -> ( 1 ... N ) e. Fin ) |
| 56 |
5
|
adantr |
|- ( ( ph /\ k e. ( 1 ... N ) ) -> R e. Ring ) |
| 57 |
|
fz1ssfz0 |
|- ( 1 ... N ) C_ ( 0 ... N ) |
| 58 |
57
|
a1i |
|- ( ph -> ( 1 ... N ) C_ ( 0 ... N ) ) |
| 59 |
58
|
sselda |
|- ( ( ph /\ k e. ( 1 ... N ) ) -> k e. ( 0 ... N ) ) |
| 60 |
59 14
|
syldan |
|- ( ( ph /\ k e. ( 1 ... N ) ) -> ( D ` k ) e. B ) |
| 61 |
7
|
adantr |
|- ( ( ph /\ k e. ( 1 ... N ) ) -> C e. B ) |
| 62 |
1 4 56 60 61
|
ringcld |
|- ( ( ph /\ k e. ( 1 ... N ) ) -> ( ( D ` k ) .x. C ) e. B ) |
| 63 |
|
c0ex |
|- 0 e. _V |
| 64 |
63
|
a1i |
|- ( ph -> 0 e. _V ) |
| 65 |
|
0nnn |
|- -. 0 e. NN |
| 66 |
|
elfznn |
|- ( 0 e. ( 1 ... N ) -> 0 e. NN ) |
| 67 |
65 66
|
mto |
|- -. 0 e. ( 1 ... N ) |
| 68 |
67
|
a1i |
|- ( ph -> -. 0 e. ( 1 ... N ) ) |
| 69 |
|
0elfz |
|- ( N e. NN0 -> 0 e. ( 0 ... N ) ) |
| 70 |
8 69
|
syl |
|- ( ph -> 0 e. ( 0 ... N ) ) |
| 71 |
9 70
|
ffvelcdmd |
|- ( ph -> ( D ` 0 ) e. B ) |
| 72 |
1 4 5 71 7
|
ringcld |
|- ( ph -> ( ( D ` 0 ) .x. C ) e. B ) |
| 73 |
|
fveq2 |
|- ( k = 0 -> ( D ` k ) = ( D ` 0 ) ) |
| 74 |
73
|
oveq1d |
|- ( k = 0 -> ( ( D ` k ) .x. C ) = ( ( D ` 0 ) .x. C ) ) |
| 75 |
1 2 12 55 62 64 68 72 74
|
gsumunsn |
|- ( ph -> ( R gsum ( k e. ( ( 1 ... N ) u. { 0 } ) |-> ( ( D ` k ) .x. C ) ) ) = ( ( R gsum ( k e. ( 1 ... N ) |-> ( ( D ` k ) .x. C ) ) ) .+ ( ( D ` 0 ) .x. C ) ) ) |
| 76 |
|
nfcv |
|- F/_ k ( ( D ` ( l + 1 ) ) .x. C ) |
| 77 |
|
fveq2 |
|- ( k = ( l + 1 ) -> ( D ` k ) = ( D ` ( l + 1 ) ) ) |
| 78 |
77
|
oveq1d |
|- ( k = ( l + 1 ) -> ( ( D ` k ) .x. C ) = ( ( D ` ( l + 1 ) ) .x. C ) ) |
| 79 |
|
ssidd |
|- ( ph -> B C_ B ) |
| 80 |
8
|
nn0zd |
|- ( ph -> N e. ZZ ) |
| 81 |
|
fzoval |
|- ( N e. ZZ -> ( 0 ..^ N ) = ( 0 ... ( N - 1 ) ) ) |
| 82 |
80 81
|
syl |
|- ( ph -> ( 0 ..^ N ) = ( 0 ... ( N - 1 ) ) ) |
| 83 |
82
|
eleq2d |
|- ( ph -> ( l e. ( 0 ..^ N ) <-> l e. ( 0 ... ( N - 1 ) ) ) ) |
| 84 |
83
|
biimpar |
|- ( ( ph /\ l e. ( 0 ... ( N - 1 ) ) ) -> l e. ( 0 ..^ N ) ) |
| 85 |
|
fz0add1fz1 |
|- ( ( N e. NN0 /\ l e. ( 0 ..^ N ) ) -> ( l + 1 ) e. ( 1 ... N ) ) |
| 86 |
8 84 85
|
syl2an2r |
|- ( ( ph /\ l e. ( 0 ... ( N - 1 ) ) ) -> ( l + 1 ) e. ( 1 ... N ) ) |
| 87 |
59
|
elfzelzd |
|- ( ( ph /\ k e. ( 1 ... N ) ) -> k e. ZZ ) |
| 88 |
80
|
adantr |
|- ( ( ph /\ k e. ( 1 ... N ) ) -> N e. ZZ ) |
| 89 |
|
simpr |
|- ( ( ph /\ k e. ( 1 ... N ) ) -> k e. ( 1 ... N ) ) |
| 90 |
|
elfzm1b |
|- ( ( k e. ZZ /\ N e. ZZ ) -> ( k e. ( 1 ... N ) <-> ( k - 1 ) e. ( 0 ... ( N - 1 ) ) ) ) |
| 91 |
90
|
biimpa |
|- ( ( ( k e. ZZ /\ N e. ZZ ) /\ k e. ( 1 ... N ) ) -> ( k - 1 ) e. ( 0 ... ( N - 1 ) ) ) |
| 92 |
87 88 89 91
|
syl21anc |
|- ( ( ph /\ k e. ( 1 ... N ) ) -> ( k - 1 ) e. ( 0 ... ( N - 1 ) ) ) |
| 93 |
|
eqcom |
|- ( ( l + 1 ) = k <-> k = ( l + 1 ) ) |
| 94 |
|
elfznn0 |
|- ( l e. ( 0 ... ( N - 1 ) ) -> l e. NN0 ) |
| 95 |
94
|
nn0cnd |
|- ( l e. ( 0 ... ( N - 1 ) ) -> l e. CC ) |
| 96 |
95
|
adantl |
|- ( ( ( ph /\ k e. ( 1 ... N ) ) /\ l e. ( 0 ... ( N - 1 ) ) ) -> l e. CC ) |
| 97 |
|
1cnd |
|- ( ( ( ph /\ k e. ( 1 ... N ) ) /\ l e. ( 0 ... ( N - 1 ) ) ) -> 1 e. CC ) |
| 98 |
87
|
zcnd |
|- ( ( ph /\ k e. ( 1 ... N ) ) -> k e. CC ) |
| 99 |
98
|
adantr |
|- ( ( ( ph /\ k e. ( 1 ... N ) ) /\ l e. ( 0 ... ( N - 1 ) ) ) -> k e. CC ) |
| 100 |
96 97 99
|
addlsub |
|- ( ( ( ph /\ k e. ( 1 ... N ) ) /\ l e. ( 0 ... ( N - 1 ) ) ) -> ( ( l + 1 ) = k <-> l = ( k - 1 ) ) ) |
| 101 |
93 100
|
bitr3id |
|- ( ( ( ph /\ k e. ( 1 ... N ) ) /\ l e. ( 0 ... ( N - 1 ) ) ) -> ( k = ( l + 1 ) <-> l = ( k - 1 ) ) ) |
| 102 |
92 101
|
reu6dv |
|- ( ( ph /\ k e. ( 1 ... N ) ) -> E! l e. ( 0 ... ( N - 1 ) ) k = ( l + 1 ) ) |
| 103 |
76 1 24 78 12 55 79 62 86 102
|
gsummptf1o |
|- ( ph -> ( R gsum ( k e. ( 1 ... N ) |-> ( ( D ` k ) .x. C ) ) ) = ( R gsum ( l e. ( 0 ... ( N - 1 ) ) |-> ( ( D ` ( l + 1 ) ) .x. C ) ) ) ) |
| 104 |
|
fvoveq1 |
|- ( l = k -> ( D ` ( l + 1 ) ) = ( D ` ( k + 1 ) ) ) |
| 105 |
104
|
oveq1d |
|- ( l = k -> ( ( D ` ( l + 1 ) ) .x. C ) = ( ( D ` ( k + 1 ) ) .x. C ) ) |
| 106 |
105
|
cbvmptv |
|- ( l e. ( 0 ... ( N - 1 ) ) |-> ( ( D ` ( l + 1 ) ) .x. C ) ) = ( k e. ( 0 ... ( N - 1 ) ) |-> ( ( D ` ( k + 1 ) ) .x. C ) ) |
| 107 |
82
|
mpteq1d |
|- ( ph -> ( k e. ( 0 ..^ N ) |-> ( ( D ` ( k + 1 ) ) .x. C ) ) = ( k e. ( 0 ... ( N - 1 ) ) |-> ( ( D ` ( k + 1 ) ) .x. C ) ) ) |
| 108 |
106 107
|
eqtr4id |
|- ( ph -> ( l e. ( 0 ... ( N - 1 ) ) |-> ( ( D ` ( l + 1 ) ) .x. C ) ) = ( k e. ( 0 ..^ N ) |-> ( ( D ` ( k + 1 ) ) .x. C ) ) ) |
| 109 |
108
|
oveq2d |
|- ( ph -> ( R gsum ( l e. ( 0 ... ( N - 1 ) ) |-> ( ( D ` ( l + 1 ) ) .x. C ) ) ) = ( R gsum ( k e. ( 0 ..^ N ) |-> ( ( D ` ( k + 1 ) ) .x. C ) ) ) ) |
| 110 |
103 109
|
eqtrd |
|- ( ph -> ( R gsum ( k e. ( 1 ... N ) |-> ( ( D ` k ) .x. C ) ) ) = ( R gsum ( k e. ( 0 ..^ N ) |-> ( ( D ` ( k + 1 ) ) .x. C ) ) ) ) |
| 111 |
110
|
oveq1d |
|- ( ph -> ( ( R gsum ( k e. ( 1 ... N ) |-> ( ( D ` k ) .x. C ) ) ) .+ ( ( D ` 0 ) .x. C ) ) = ( ( R gsum ( k e. ( 0 ..^ N ) |-> ( ( D ` ( k + 1 ) ) .x. C ) ) ) .+ ( ( D ` 0 ) .x. C ) ) ) |
| 112 |
54 75 111
|
3eqtrd |
|- ( ph -> ( R gsum ( k e. ( 0 ... N ) |-> ( ( D ` k ) .x. C ) ) ) = ( ( R gsum ( k e. ( 0 ..^ N ) |-> ( ( D ` ( k + 1 ) ) .x. C ) ) ) .+ ( ( D ` 0 ) .x. C ) ) ) |
| 113 |
48 112
|
eqtr3d |
|- ( ph -> ( ( R gsum ( k e. ( 0 ... N ) |-> ( D ` k ) ) ) .x. C ) = ( ( R gsum ( k e. ( 0 ..^ N ) |-> ( ( D ` ( k + 1 ) ) .x. C ) ) ) .+ ( ( D ` 0 ) .x. C ) ) ) |
| 114 |
47 113
|
oveq12d |
|- ( ph -> ( ( ( R gsum ( k e. ( 0 ... N ) |-> ( D ` k ) ) ) .x. A ) .- ( ( R gsum ( k e. ( 0 ... N ) |-> ( D ` k ) ) ) .x. C ) ) = ( ( ( R gsum ( k e. ( 0 ..^ N ) |-> ( ( D ` k ) .x. A ) ) ) .+ ( ( D ` N ) .x. A ) ) .- ( ( R gsum ( k e. ( 0 ..^ N ) |-> ( ( D ` ( k + 1 ) ) .x. C ) ) ) .+ ( ( D ` 0 ) .x. C ) ) ) ) |
| 115 |
5
|
ringabld |
|- ( ph -> R e. Abel ) |
| 116 |
37
|
ralrimiva |
|- ( ph -> A. k e. ( 0 ..^ N ) ( ( D ` k ) .x. A ) e. B ) |
| 117 |
1 12 30 116
|
gsummptcl |
|- ( ph -> ( R gsum ( k e. ( 0 ..^ N ) |-> ( ( D ` k ) .x. A ) ) ) e. B ) |
| 118 |
9
|
adantr |
|- ( ( ph /\ k e. ( 0 ..^ N ) ) -> D : ( 0 ... N ) --> B ) |
| 119 |
|
fz0add1fz1 |
|- ( ( N e. NN0 /\ k e. ( 0 ..^ N ) ) -> ( k + 1 ) e. ( 1 ... N ) ) |
| 120 |
8 119
|
sylan |
|- ( ( ph /\ k e. ( 0 ..^ N ) ) -> ( k + 1 ) e. ( 1 ... N ) ) |
| 121 |
57 120
|
sselid |
|- ( ( ph /\ k e. ( 0 ..^ N ) ) -> ( k + 1 ) e. ( 0 ... N ) ) |
| 122 |
118 121
|
ffvelcdmd |
|- ( ( ph /\ k e. ( 0 ..^ N ) ) -> ( D ` ( k + 1 ) ) e. B ) |
| 123 |
7
|
adantr |
|- ( ( ph /\ k e. ( 0 ..^ N ) ) -> C e. B ) |
| 124 |
1 4 31 122 123
|
ringcld |
|- ( ( ph /\ k e. ( 0 ..^ N ) ) -> ( ( D ` ( k + 1 ) ) .x. C ) e. B ) |
| 125 |
124
|
ralrimiva |
|- ( ph -> A. k e. ( 0 ..^ N ) ( ( D ` ( k + 1 ) ) .x. C ) e. B ) |
| 126 |
1 12 30 125
|
gsummptcl |
|- ( ph -> ( R gsum ( k e. ( 0 ..^ N ) |-> ( ( D ` ( k + 1 ) ) .x. C ) ) ) e. B ) |
| 127 |
1 2 3
|
ablsub4 |
|- ( ( R e. Abel /\ ( ( R gsum ( k e. ( 0 ..^ N ) |-> ( ( D ` k ) .x. A ) ) ) e. B /\ ( ( D ` N ) .x. A ) e. B ) /\ ( ( R gsum ( k e. ( 0 ..^ N ) |-> ( ( D ` ( k + 1 ) ) .x. C ) ) ) e. B /\ ( ( D ` 0 ) .x. C ) e. B ) ) -> ( ( ( R gsum ( k e. ( 0 ..^ N ) |-> ( ( D ` k ) .x. A ) ) ) .+ ( ( D ` N ) .x. A ) ) .- ( ( R gsum ( k e. ( 0 ..^ N ) |-> ( ( D ` ( k + 1 ) ) .x. C ) ) ) .+ ( ( D ` 0 ) .x. C ) ) ) = ( ( ( R gsum ( k e. ( 0 ..^ N ) |-> ( ( D ` k ) .x. A ) ) ) .- ( R gsum ( k e. ( 0 ..^ N ) |-> ( ( D ` ( k + 1 ) ) .x. C ) ) ) ) .+ ( ( ( D ` N ) .x. A ) .- ( ( D ` 0 ) .x. C ) ) ) ) |
| 128 |
115 117 43 126 72 127
|
syl122anc |
|- ( ph -> ( ( ( R gsum ( k e. ( 0 ..^ N ) |-> ( ( D ` k ) .x. A ) ) ) .+ ( ( D ` N ) .x. A ) ) .- ( ( R gsum ( k e. ( 0 ..^ N ) |-> ( ( D ` ( k + 1 ) ) .x. C ) ) ) .+ ( ( D ` 0 ) .x. C ) ) ) = ( ( ( R gsum ( k e. ( 0 ..^ N ) |-> ( ( D ` k ) .x. A ) ) ) .- ( R gsum ( k e. ( 0 ..^ N ) |-> ( ( D ` ( k + 1 ) ) .x. C ) ) ) ) .+ ( ( ( D ` N ) .x. A ) .- ( ( D ` 0 ) .x. C ) ) ) ) |
| 129 |
17 114 128
|
3eqtrd |
|- ( ph -> ( ( R gsum ( k e. ( 0 ... N ) |-> ( D ` k ) ) ) .x. ( A .- C ) ) = ( ( ( R gsum ( k e. ( 0 ..^ N ) |-> ( ( D ` k ) .x. A ) ) ) .- ( R gsum ( k e. ( 0 ..^ N ) |-> ( ( D ` ( k + 1 ) ) .x. C ) ) ) ) .+ ( ( ( D ` N ) .x. A ) .- ( ( D ` 0 ) .x. C ) ) ) ) |
| 130 |
9
|
feqmptd |
|- ( ph -> D = ( k e. ( 0 ... N ) |-> ( D ` k ) ) ) |
| 131 |
130
|
oveq2d |
|- ( ph -> ( R gsum D ) = ( R gsum ( k e. ( 0 ... N ) |-> ( D ` k ) ) ) ) |
| 132 |
131
|
oveq1d |
|- ( ph -> ( ( R gsum D ) .x. ( A .- C ) ) = ( ( R gsum ( k e. ( 0 ... N ) |-> ( D ` k ) ) ) .x. ( A .- C ) ) ) |
| 133 |
11
|
mpteq2dva |
|- ( ph -> ( k e. ( 0 ..^ N ) |-> F ) = ( k e. ( 0 ..^ N ) |-> ( ( ( D ` k ) .x. A ) .- ( ( D ` ( k + 1 ) ) .x. C ) ) ) ) |
| 134 |
133
|
oveq2d |
|- ( ph -> ( R gsum ( k e. ( 0 ..^ N ) |-> F ) ) = ( R gsum ( k e. ( 0 ..^ N ) |-> ( ( ( D ` k ) .x. A ) .- ( ( D ` ( k + 1 ) ) .x. C ) ) ) ) ) |
| 135 |
|
eqid |
|- ( k e. ( 0 ..^ N ) |-> ( ( D ` k ) .x. A ) ) = ( k e. ( 0 ..^ N ) |-> ( ( D ` k ) .x. A ) ) |
| 136 |
|
eqid |
|- ( k e. ( 0 ..^ N ) |-> ( ( D ` ( k + 1 ) ) .x. C ) ) = ( k e. ( 0 ..^ N ) |-> ( ( D ` ( k + 1 ) ) .x. C ) ) |
| 137 |
1 3 115 30 37 124 135 136
|
gsummptfidmsub |
|- ( ph -> ( R gsum ( k e. ( 0 ..^ N ) |-> ( ( ( D ` k ) .x. A ) .- ( ( D ` ( k + 1 ) ) .x. C ) ) ) ) = ( ( R gsum ( k e. ( 0 ..^ N ) |-> ( ( D ` k ) .x. A ) ) ) .- ( R gsum ( k e. ( 0 ..^ N ) |-> ( ( D ` ( k + 1 ) ) .x. C ) ) ) ) ) |
| 138 |
134 137
|
eqtrd |
|- ( ph -> ( R gsum ( k e. ( 0 ..^ N ) |-> F ) ) = ( ( R gsum ( k e. ( 0 ..^ N ) |-> ( ( D ` k ) .x. A ) ) ) .- ( R gsum ( k e. ( 0 ..^ N ) |-> ( ( D ` ( k + 1 ) ) .x. C ) ) ) ) ) |
| 139 |
138 10
|
oveq12d |
|- ( ph -> ( ( R gsum ( k e. ( 0 ..^ N ) |-> F ) ) .+ E ) = ( ( ( R gsum ( k e. ( 0 ..^ N ) |-> ( ( D ` k ) .x. A ) ) ) .- ( R gsum ( k e. ( 0 ..^ N ) |-> ( ( D ` ( k + 1 ) ) .x. C ) ) ) ) .+ ( ( ( D ` N ) .x. A ) .- ( ( D ` 0 ) .x. C ) ) ) ) |
| 140 |
129 132 139
|
3eqtr4d |
|- ( ph -> ( ( R gsum D ) .x. ( A .- C ) ) = ( ( R gsum ( k e. ( 0 ..^ N ) |-> F ) ) .+ E ) ) |