| Step |
Hyp |
Ref |
Expression |
| 1 |
|
gsummulsubdishift.b |
|- B = ( Base ` R ) |
| 2 |
|
gsummulsubdishift.p |
|- .+ = ( +g ` R ) |
| 3 |
|
gsummulsubdishift.m |
|- .- = ( -g ` R ) |
| 4 |
|
gsummulsubdishift.t |
|- .x. = ( .r ` R ) |
| 5 |
|
gsummulsubdishift.r |
|- ( ph -> R e. Ring ) |
| 6 |
|
gsummulsubdishift.a |
|- ( ph -> A e. B ) |
| 7 |
|
gsummulsubdishift.c |
|- ( ph -> C e. B ) |
| 8 |
|
gsummulsubdishift.n |
|- ( ph -> N e. NN0 ) |
| 9 |
|
gsummulsubdishift.d |
|- ( ph -> D : ( 0 ... N ) --> B ) |
| 10 |
|
gsummulsubdishift2.e |
|- ( ph -> E = ( ( ( D ` 0 ) .x. A ) .- ( ( D ` N ) .x. C ) ) ) |
| 11 |
|
gsummulsubdishift2.f |
|- ( ( ph /\ k e. ( 0 ..^ N ) ) -> F = ( ( ( D ` ( k + 1 ) ) .x. A ) .- ( ( D ` k ) .x. C ) ) ) |
| 12 |
|
eqid |
|- ( invg ` R ) = ( invg ` R ) |
| 13 |
|
eqid |
|- ( 0g ` R ) = ( 0g ` R ) |
| 14 |
5
|
ringcmnd |
|- ( ph -> R e. CMnd ) |
| 15 |
|
ovexd |
|- ( ph -> ( 0 ... N ) e. _V ) |
| 16 |
|
fzfid |
|- ( ph -> ( 0 ... N ) e. Fin ) |
| 17 |
|
fvexd |
|- ( ph -> ( 0g ` R ) e. _V ) |
| 18 |
9 16 17
|
fdmfifsupp |
|- ( ph -> D finSupp ( 0g ` R ) ) |
| 19 |
1 13 14 15 9 18
|
gsumcl |
|- ( ph -> ( R gsum D ) e. B ) |
| 20 |
5
|
ringgrpd |
|- ( ph -> R e. Grp ) |
| 21 |
1 3 20 7 6
|
grpsubcld |
|- ( ph -> ( C .- A ) e. B ) |
| 22 |
1 4 12 5 19 21
|
ringmneg2 |
|- ( ph -> ( ( R gsum D ) .x. ( ( invg ` R ) ` ( C .- A ) ) ) = ( ( invg ` R ) ` ( ( R gsum D ) .x. ( C .- A ) ) ) ) |
| 23 |
1 3 12
|
grpinvsub |
|- ( ( R e. Grp /\ C e. B /\ A e. B ) -> ( ( invg ` R ) ` ( C .- A ) ) = ( A .- C ) ) |
| 24 |
20 7 6 23
|
syl3anc |
|- ( ph -> ( ( invg ` R ) ` ( C .- A ) ) = ( A .- C ) ) |
| 25 |
24
|
oveq2d |
|- ( ph -> ( ( R gsum D ) .x. ( ( invg ` R ) ` ( C .- A ) ) ) = ( ( R gsum D ) .x. ( A .- C ) ) ) |
| 26 |
10
|
fveq2d |
|- ( ph -> ( ( invg ` R ) ` E ) = ( ( invg ` R ) ` ( ( ( D ` 0 ) .x. A ) .- ( ( D ` N ) .x. C ) ) ) ) |
| 27 |
|
0elfz |
|- ( N e. NN0 -> 0 e. ( 0 ... N ) ) |
| 28 |
8 27
|
syl |
|- ( ph -> 0 e. ( 0 ... N ) ) |
| 29 |
9 28
|
ffvelcdmd |
|- ( ph -> ( D ` 0 ) e. B ) |
| 30 |
1 4 5 29 6
|
ringcld |
|- ( ph -> ( ( D ` 0 ) .x. A ) e. B ) |
| 31 |
|
nn0fz0 |
|- ( N e. NN0 <-> N e. ( 0 ... N ) ) |
| 32 |
8 31
|
sylib |
|- ( ph -> N e. ( 0 ... N ) ) |
| 33 |
9 32
|
ffvelcdmd |
|- ( ph -> ( D ` N ) e. B ) |
| 34 |
1 4 5 33 7
|
ringcld |
|- ( ph -> ( ( D ` N ) .x. C ) e. B ) |
| 35 |
1 3 12
|
grpinvsub |
|- ( ( R e. Grp /\ ( ( D ` 0 ) .x. A ) e. B /\ ( ( D ` N ) .x. C ) e. B ) -> ( ( invg ` R ) ` ( ( ( D ` 0 ) .x. A ) .- ( ( D ` N ) .x. C ) ) ) = ( ( ( D ` N ) .x. C ) .- ( ( D ` 0 ) .x. A ) ) ) |
| 36 |
20 30 34 35
|
syl3anc |
|- ( ph -> ( ( invg ` R ) ` ( ( ( D ` 0 ) .x. A ) .- ( ( D ` N ) .x. C ) ) ) = ( ( ( D ` N ) .x. C ) .- ( ( D ` 0 ) .x. A ) ) ) |
| 37 |
26 36
|
eqtrd |
|- ( ph -> ( ( invg ` R ) ` E ) = ( ( ( D ` N ) .x. C ) .- ( ( D ` 0 ) .x. A ) ) ) |
| 38 |
11
|
fveq2d |
|- ( ( ph /\ k e. ( 0 ..^ N ) ) -> ( ( invg ` R ) ` F ) = ( ( invg ` R ) ` ( ( ( D ` ( k + 1 ) ) .x. A ) .- ( ( D ` k ) .x. C ) ) ) ) |
| 39 |
20
|
adantr |
|- ( ( ph /\ k e. ( 0 ..^ N ) ) -> R e. Grp ) |
| 40 |
5
|
adantr |
|- ( ( ph /\ k e. ( 0 ..^ N ) ) -> R e. Ring ) |
| 41 |
9
|
adantr |
|- ( ( ph /\ k e. ( 0 ..^ N ) ) -> D : ( 0 ... N ) --> B ) |
| 42 |
|
fzofzp1 |
|- ( k e. ( 0 ..^ N ) -> ( k + 1 ) e. ( 0 ... N ) ) |
| 43 |
42
|
adantl |
|- ( ( ph /\ k e. ( 0 ..^ N ) ) -> ( k + 1 ) e. ( 0 ... N ) ) |
| 44 |
41 43
|
ffvelcdmd |
|- ( ( ph /\ k e. ( 0 ..^ N ) ) -> ( D ` ( k + 1 ) ) e. B ) |
| 45 |
6
|
adantr |
|- ( ( ph /\ k e. ( 0 ..^ N ) ) -> A e. B ) |
| 46 |
1 4 40 44 45
|
ringcld |
|- ( ( ph /\ k e. ( 0 ..^ N ) ) -> ( ( D ` ( k + 1 ) ) .x. A ) e. B ) |
| 47 |
|
fzossfz |
|- ( 0 ..^ N ) C_ ( 0 ... N ) |
| 48 |
|
simpr |
|- ( ( ph /\ k e. ( 0 ..^ N ) ) -> k e. ( 0 ..^ N ) ) |
| 49 |
47 48
|
sselid |
|- ( ( ph /\ k e. ( 0 ..^ N ) ) -> k e. ( 0 ... N ) ) |
| 50 |
41 49
|
ffvelcdmd |
|- ( ( ph /\ k e. ( 0 ..^ N ) ) -> ( D ` k ) e. B ) |
| 51 |
7
|
adantr |
|- ( ( ph /\ k e. ( 0 ..^ N ) ) -> C e. B ) |
| 52 |
1 4 40 50 51
|
ringcld |
|- ( ( ph /\ k e. ( 0 ..^ N ) ) -> ( ( D ` k ) .x. C ) e. B ) |
| 53 |
1 3 12
|
grpinvsub |
|- ( ( R e. Grp /\ ( ( D ` ( k + 1 ) ) .x. A ) e. B /\ ( ( D ` k ) .x. C ) e. B ) -> ( ( invg ` R ) ` ( ( ( D ` ( k + 1 ) ) .x. A ) .- ( ( D ` k ) .x. C ) ) ) = ( ( ( D ` k ) .x. C ) .- ( ( D ` ( k + 1 ) ) .x. A ) ) ) |
| 54 |
39 46 52 53
|
syl3anc |
|- ( ( ph /\ k e. ( 0 ..^ N ) ) -> ( ( invg ` R ) ` ( ( ( D ` ( k + 1 ) ) .x. A ) .- ( ( D ` k ) .x. C ) ) ) = ( ( ( D ` k ) .x. C ) .- ( ( D ` ( k + 1 ) ) .x. A ) ) ) |
| 55 |
38 54
|
eqtrd |
|- ( ( ph /\ k e. ( 0 ..^ N ) ) -> ( ( invg ` R ) ` F ) = ( ( ( D ` k ) .x. C ) .- ( ( D ` ( k + 1 ) ) .x. A ) ) ) |
| 56 |
1 2 3 4 5 7 6 8 9 37 55
|
gsummulsubdishift1 |
|- ( ph -> ( ( R gsum D ) .x. ( C .- A ) ) = ( ( R gsum ( k e. ( 0 ..^ N ) |-> ( ( invg ` R ) ` F ) ) ) .+ ( ( invg ` R ) ` E ) ) ) |
| 57 |
56
|
fveq2d |
|- ( ph -> ( ( invg ` R ) ` ( ( R gsum D ) .x. ( C .- A ) ) ) = ( ( invg ` R ) ` ( ( R gsum ( k e. ( 0 ..^ N ) |-> ( ( invg ` R ) ` F ) ) ) .+ ( ( invg ` R ) ` E ) ) ) ) |
| 58 |
5
|
ringabld |
|- ( ph -> R e. Abel ) |
| 59 |
|
fzofi |
|- ( 0 ..^ N ) e. Fin |
| 60 |
59
|
a1i |
|- ( ph -> ( 0 ..^ N ) e. Fin ) |
| 61 |
1 3 39 46 52
|
grpsubcld |
|- ( ( ph /\ k e. ( 0 ..^ N ) ) -> ( ( ( D ` ( k + 1 ) ) .x. A ) .- ( ( D ` k ) .x. C ) ) e. B ) |
| 62 |
11 61
|
eqeltrd |
|- ( ( ph /\ k e. ( 0 ..^ N ) ) -> F e. B ) |
| 63 |
1 12 39 62
|
grpinvcld |
|- ( ( ph /\ k e. ( 0 ..^ N ) ) -> ( ( invg ` R ) ` F ) e. B ) |
| 64 |
63
|
ralrimiva |
|- ( ph -> A. k e. ( 0 ..^ N ) ( ( invg ` R ) ` F ) e. B ) |
| 65 |
1 14 60 64
|
gsummptcl |
|- ( ph -> ( R gsum ( k e. ( 0 ..^ N ) |-> ( ( invg ` R ) ` F ) ) ) e. B ) |
| 66 |
1 3 20 30 34
|
grpsubcld |
|- ( ph -> ( ( ( D ` 0 ) .x. A ) .- ( ( D ` N ) .x. C ) ) e. B ) |
| 67 |
10 66
|
eqeltrd |
|- ( ph -> E e. B ) |
| 68 |
1 12 20 67
|
grpinvcld |
|- ( ph -> ( ( invg ` R ) ` E ) e. B ) |
| 69 |
1 2 12
|
ablinvadd |
|- ( ( R e. Abel /\ ( R gsum ( k e. ( 0 ..^ N ) |-> ( ( invg ` R ) ` F ) ) ) e. B /\ ( ( invg ` R ) ` E ) e. B ) -> ( ( invg ` R ) ` ( ( R gsum ( k e. ( 0 ..^ N ) |-> ( ( invg ` R ) ` F ) ) ) .+ ( ( invg ` R ) ` E ) ) ) = ( ( ( invg ` R ) ` ( R gsum ( k e. ( 0 ..^ N ) |-> ( ( invg ` R ) ` F ) ) ) ) .+ ( ( invg ` R ) ` ( ( invg ` R ) ` E ) ) ) ) |
| 70 |
58 65 68 69
|
syl3anc |
|- ( ph -> ( ( invg ` R ) ` ( ( R gsum ( k e. ( 0 ..^ N ) |-> ( ( invg ` R ) ` F ) ) ) .+ ( ( invg ` R ) ` E ) ) ) = ( ( ( invg ` R ) ` ( R gsum ( k e. ( 0 ..^ N ) |-> ( ( invg ` R ) ` F ) ) ) ) .+ ( ( invg ` R ) ` ( ( invg ` R ) ` E ) ) ) ) |
| 71 |
63
|
fmpttd |
|- ( ph -> ( k e. ( 0 ..^ N ) |-> ( ( invg ` R ) ` F ) ) : ( 0 ..^ N ) --> B ) |
| 72 |
71 60 17
|
fidmfisupp |
|- ( ph -> ( k e. ( 0 ..^ N ) |-> ( ( invg ` R ) ` F ) ) finSupp ( 0g ` R ) ) |
| 73 |
1 13 12 58 60 71 72
|
gsuminv |
|- ( ph -> ( R gsum ( ( invg ` R ) o. ( k e. ( 0 ..^ N ) |-> ( ( invg ` R ) ` F ) ) ) ) = ( ( invg ` R ) ` ( R gsum ( k e. ( 0 ..^ N ) |-> ( ( invg ` R ) ` F ) ) ) ) ) |
| 74 |
1 12
|
grpinvf |
|- ( R e. Grp -> ( invg ` R ) : B --> B ) |
| 75 |
20 74
|
syl |
|- ( ph -> ( invg ` R ) : B --> B ) |
| 76 |
75 63
|
cofmpt |
|- ( ph -> ( ( invg ` R ) o. ( k e. ( 0 ..^ N ) |-> ( ( invg ` R ) ` F ) ) ) = ( k e. ( 0 ..^ N ) |-> ( ( invg ` R ) ` ( ( invg ` R ) ` F ) ) ) ) |
| 77 |
1 12 39 62
|
grpinvinvd |
|- ( ( ph /\ k e. ( 0 ..^ N ) ) -> ( ( invg ` R ) ` ( ( invg ` R ) ` F ) ) = F ) |
| 78 |
77
|
mpteq2dva |
|- ( ph -> ( k e. ( 0 ..^ N ) |-> ( ( invg ` R ) ` ( ( invg ` R ) ` F ) ) ) = ( k e. ( 0 ..^ N ) |-> F ) ) |
| 79 |
76 78
|
eqtrd |
|- ( ph -> ( ( invg ` R ) o. ( k e. ( 0 ..^ N ) |-> ( ( invg ` R ) ` F ) ) ) = ( k e. ( 0 ..^ N ) |-> F ) ) |
| 80 |
79
|
oveq2d |
|- ( ph -> ( R gsum ( ( invg ` R ) o. ( k e. ( 0 ..^ N ) |-> ( ( invg ` R ) ` F ) ) ) ) = ( R gsum ( k e. ( 0 ..^ N ) |-> F ) ) ) |
| 81 |
73 80
|
eqtr3d |
|- ( ph -> ( ( invg ` R ) ` ( R gsum ( k e. ( 0 ..^ N ) |-> ( ( invg ` R ) ` F ) ) ) ) = ( R gsum ( k e. ( 0 ..^ N ) |-> F ) ) ) |
| 82 |
1 12 20 67
|
grpinvinvd |
|- ( ph -> ( ( invg ` R ) ` ( ( invg ` R ) ` E ) ) = E ) |
| 83 |
81 82
|
oveq12d |
|- ( ph -> ( ( ( invg ` R ) ` ( R gsum ( k e. ( 0 ..^ N ) |-> ( ( invg ` R ) ` F ) ) ) ) .+ ( ( invg ` R ) ` ( ( invg ` R ) ` E ) ) ) = ( ( R gsum ( k e. ( 0 ..^ N ) |-> F ) ) .+ E ) ) |
| 84 |
57 70 83
|
3eqtrd |
|- ( ph -> ( ( invg ` R ) ` ( ( R gsum D ) .x. ( C .- A ) ) ) = ( ( R gsum ( k e. ( 0 ..^ N ) |-> F ) ) .+ E ) ) |
| 85 |
22 25 84
|
3eqtr3d |
|- ( ph -> ( ( R gsum D ) .x. ( A .- C ) ) = ( ( R gsum ( k e. ( 0 ..^ N ) |-> F ) ) .+ E ) ) |