| Step |
Hyp |
Ref |
Expression |
| 1 |
|
gsummulsubdishift.b |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
| 2 |
|
gsummulsubdishift.p |
⊢ + = ( +g ‘ 𝑅 ) |
| 3 |
|
gsummulsubdishift.m |
⊢ − = ( -g ‘ 𝑅 ) |
| 4 |
|
gsummulsubdishift.t |
⊢ · = ( .r ‘ 𝑅 ) |
| 5 |
|
gsummulsubdishift.r |
⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
| 6 |
|
gsummulsubdishift.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝐵 ) |
| 7 |
|
gsummulsubdishift.c |
⊢ ( 𝜑 → 𝐶 ∈ 𝐵 ) |
| 8 |
|
gsummulsubdishift.n |
⊢ ( 𝜑 → 𝑁 ∈ ℕ0 ) |
| 9 |
|
gsummulsubdishift.d |
⊢ ( 𝜑 → 𝐷 : ( 0 ... 𝑁 ) ⟶ 𝐵 ) |
| 10 |
|
gsummulsubdishift1.e |
⊢ ( 𝜑 → 𝐸 = ( ( ( 𝐷 ‘ 𝑁 ) · 𝐴 ) − ( ( 𝐷 ‘ 0 ) · 𝐶 ) ) ) |
| 11 |
|
gsummulsubdishift1.f |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ..^ 𝑁 ) ) → 𝐹 = ( ( ( 𝐷 ‘ 𝑘 ) · 𝐴 ) − ( ( 𝐷 ‘ ( 𝑘 + 1 ) ) · 𝐶 ) ) ) |
| 12 |
5
|
ringcmnd |
⊢ ( 𝜑 → 𝑅 ∈ CMnd ) |
| 13 |
|
fzfid |
⊢ ( 𝜑 → ( 0 ... 𝑁 ) ∈ Fin ) |
| 14 |
9
|
ffvelcdmda |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) → ( 𝐷 ‘ 𝑘 ) ∈ 𝐵 ) |
| 15 |
14
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑘 ∈ ( 0 ... 𝑁 ) ( 𝐷 ‘ 𝑘 ) ∈ 𝐵 ) |
| 16 |
1 12 13 15
|
gsummptcl |
⊢ ( 𝜑 → ( 𝑅 Σg ( 𝑘 ∈ ( 0 ... 𝑁 ) ↦ ( 𝐷 ‘ 𝑘 ) ) ) ∈ 𝐵 ) |
| 17 |
1 4 3 5 16 6 7
|
ringsubdi |
⊢ ( 𝜑 → ( ( 𝑅 Σg ( 𝑘 ∈ ( 0 ... 𝑁 ) ↦ ( 𝐷 ‘ 𝑘 ) ) ) · ( 𝐴 − 𝐶 ) ) = ( ( ( 𝑅 Σg ( 𝑘 ∈ ( 0 ... 𝑁 ) ↦ ( 𝐷 ‘ 𝑘 ) ) ) · 𝐴 ) − ( ( 𝑅 Σg ( 𝑘 ∈ ( 0 ... 𝑁 ) ↦ ( 𝐷 ‘ 𝑘 ) ) ) · 𝐶 ) ) ) |
| 18 |
|
nn0uz |
⊢ ℕ0 = ( ℤ≥ ‘ 0 ) |
| 19 |
8 18
|
eleqtrdi |
⊢ ( 𝜑 → 𝑁 ∈ ( ℤ≥ ‘ 0 ) ) |
| 20 |
|
fzisfzounsn |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 0 ) → ( 0 ... 𝑁 ) = ( ( 0 ..^ 𝑁 ) ∪ { 𝑁 } ) ) |
| 21 |
19 20
|
syl |
⊢ ( 𝜑 → ( 0 ... 𝑁 ) = ( ( 0 ..^ 𝑁 ) ∪ { 𝑁 } ) ) |
| 22 |
21
|
mpteq1d |
⊢ ( 𝜑 → ( 𝑘 ∈ ( 0 ... 𝑁 ) ↦ ( ( 𝐷 ‘ 𝑘 ) · 𝐴 ) ) = ( 𝑘 ∈ ( ( 0 ..^ 𝑁 ) ∪ { 𝑁 } ) ↦ ( ( 𝐷 ‘ 𝑘 ) · 𝐴 ) ) ) |
| 23 |
22
|
oveq2d |
⊢ ( 𝜑 → ( 𝑅 Σg ( 𝑘 ∈ ( 0 ... 𝑁 ) ↦ ( ( 𝐷 ‘ 𝑘 ) · 𝐴 ) ) ) = ( 𝑅 Σg ( 𝑘 ∈ ( ( 0 ..^ 𝑁 ) ∪ { 𝑁 } ) ↦ ( ( 𝐷 ‘ 𝑘 ) · 𝐴 ) ) ) ) |
| 24 |
|
eqid |
⊢ ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) |
| 25 |
|
eqid |
⊢ ( 𝑘 ∈ ( 0 ... 𝑁 ) ↦ ( 𝐷 ‘ 𝑘 ) ) = ( 𝑘 ∈ ( 0 ... 𝑁 ) ↦ ( 𝐷 ‘ 𝑘 ) ) |
| 26 |
|
fvexd |
⊢ ( 𝜑 → ( 0g ‘ 𝑅 ) ∈ V ) |
| 27 |
25 13 14 26
|
fsuppmptdm |
⊢ ( 𝜑 → ( 𝑘 ∈ ( 0 ... 𝑁 ) ↦ ( 𝐷 ‘ 𝑘 ) ) finSupp ( 0g ‘ 𝑅 ) ) |
| 28 |
1 24 4 5 13 6 14 27
|
gsummulc1 |
⊢ ( 𝜑 → ( 𝑅 Σg ( 𝑘 ∈ ( 0 ... 𝑁 ) ↦ ( ( 𝐷 ‘ 𝑘 ) · 𝐴 ) ) ) = ( ( 𝑅 Σg ( 𝑘 ∈ ( 0 ... 𝑁 ) ↦ ( 𝐷 ‘ 𝑘 ) ) ) · 𝐴 ) ) |
| 29 |
|
fzofi |
⊢ ( 0 ..^ 𝑁 ) ∈ Fin |
| 30 |
29
|
a1i |
⊢ ( 𝜑 → ( 0 ..^ 𝑁 ) ∈ Fin ) |
| 31 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ..^ 𝑁 ) ) → 𝑅 ∈ Ring ) |
| 32 |
|
fzossfz |
⊢ ( 0 ..^ 𝑁 ) ⊆ ( 0 ... 𝑁 ) |
| 33 |
32
|
a1i |
⊢ ( 𝜑 → ( 0 ..^ 𝑁 ) ⊆ ( 0 ... 𝑁 ) ) |
| 34 |
33
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ..^ 𝑁 ) ) → 𝑘 ∈ ( 0 ... 𝑁 ) ) |
| 35 |
34 14
|
syldan |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ..^ 𝑁 ) ) → ( 𝐷 ‘ 𝑘 ) ∈ 𝐵 ) |
| 36 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ..^ 𝑁 ) ) → 𝐴 ∈ 𝐵 ) |
| 37 |
1 4 31 35 36
|
ringcld |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ..^ 𝑁 ) ) → ( ( 𝐷 ‘ 𝑘 ) · 𝐴 ) ∈ 𝐵 ) |
| 38 |
|
fzonel |
⊢ ¬ 𝑁 ∈ ( 0 ..^ 𝑁 ) |
| 39 |
38
|
a1i |
⊢ ( 𝜑 → ¬ 𝑁 ∈ ( 0 ..^ 𝑁 ) ) |
| 40 |
|
nn0fz0 |
⊢ ( 𝑁 ∈ ℕ0 ↔ 𝑁 ∈ ( 0 ... 𝑁 ) ) |
| 41 |
8 40
|
sylib |
⊢ ( 𝜑 → 𝑁 ∈ ( 0 ... 𝑁 ) ) |
| 42 |
9 41
|
ffvelcdmd |
⊢ ( 𝜑 → ( 𝐷 ‘ 𝑁 ) ∈ 𝐵 ) |
| 43 |
1 4 5 42 6
|
ringcld |
⊢ ( 𝜑 → ( ( 𝐷 ‘ 𝑁 ) · 𝐴 ) ∈ 𝐵 ) |
| 44 |
|
fveq2 |
⊢ ( 𝑘 = 𝑁 → ( 𝐷 ‘ 𝑘 ) = ( 𝐷 ‘ 𝑁 ) ) |
| 45 |
44
|
oveq1d |
⊢ ( 𝑘 = 𝑁 → ( ( 𝐷 ‘ 𝑘 ) · 𝐴 ) = ( ( 𝐷 ‘ 𝑁 ) · 𝐴 ) ) |
| 46 |
1 2 12 30 37 8 39 43 45
|
gsumunsn |
⊢ ( 𝜑 → ( 𝑅 Σg ( 𝑘 ∈ ( ( 0 ..^ 𝑁 ) ∪ { 𝑁 } ) ↦ ( ( 𝐷 ‘ 𝑘 ) · 𝐴 ) ) ) = ( ( 𝑅 Σg ( 𝑘 ∈ ( 0 ..^ 𝑁 ) ↦ ( ( 𝐷 ‘ 𝑘 ) · 𝐴 ) ) ) + ( ( 𝐷 ‘ 𝑁 ) · 𝐴 ) ) ) |
| 47 |
23 28 46
|
3eqtr3d |
⊢ ( 𝜑 → ( ( 𝑅 Σg ( 𝑘 ∈ ( 0 ... 𝑁 ) ↦ ( 𝐷 ‘ 𝑘 ) ) ) · 𝐴 ) = ( ( 𝑅 Σg ( 𝑘 ∈ ( 0 ..^ 𝑁 ) ↦ ( ( 𝐷 ‘ 𝑘 ) · 𝐴 ) ) ) + ( ( 𝐷 ‘ 𝑁 ) · 𝐴 ) ) ) |
| 48 |
1 24 4 5 13 7 14 27
|
gsummulc1 |
⊢ ( 𝜑 → ( 𝑅 Σg ( 𝑘 ∈ ( 0 ... 𝑁 ) ↦ ( ( 𝐷 ‘ 𝑘 ) · 𝐶 ) ) ) = ( ( 𝑅 Σg ( 𝑘 ∈ ( 0 ... 𝑁 ) ↦ ( 𝐷 ‘ 𝑘 ) ) ) · 𝐶 ) ) |
| 49 |
|
fz0sn0fz1 |
⊢ ( 𝑁 ∈ ℕ0 → ( 0 ... 𝑁 ) = ( { 0 } ∪ ( 1 ... 𝑁 ) ) ) |
| 50 |
8 49
|
syl |
⊢ ( 𝜑 → ( 0 ... 𝑁 ) = ( { 0 } ∪ ( 1 ... 𝑁 ) ) ) |
| 51 |
|
uncom |
⊢ ( ( 1 ... 𝑁 ) ∪ { 0 } ) = ( { 0 } ∪ ( 1 ... 𝑁 ) ) |
| 52 |
50 51
|
eqtr4di |
⊢ ( 𝜑 → ( 0 ... 𝑁 ) = ( ( 1 ... 𝑁 ) ∪ { 0 } ) ) |
| 53 |
52
|
mpteq1d |
⊢ ( 𝜑 → ( 𝑘 ∈ ( 0 ... 𝑁 ) ↦ ( ( 𝐷 ‘ 𝑘 ) · 𝐶 ) ) = ( 𝑘 ∈ ( ( 1 ... 𝑁 ) ∪ { 0 } ) ↦ ( ( 𝐷 ‘ 𝑘 ) · 𝐶 ) ) ) |
| 54 |
53
|
oveq2d |
⊢ ( 𝜑 → ( 𝑅 Σg ( 𝑘 ∈ ( 0 ... 𝑁 ) ↦ ( ( 𝐷 ‘ 𝑘 ) · 𝐶 ) ) ) = ( 𝑅 Σg ( 𝑘 ∈ ( ( 1 ... 𝑁 ) ∪ { 0 } ) ↦ ( ( 𝐷 ‘ 𝑘 ) · 𝐶 ) ) ) ) |
| 55 |
|
fzfid |
⊢ ( 𝜑 → ( 1 ... 𝑁 ) ∈ Fin ) |
| 56 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 1 ... 𝑁 ) ) → 𝑅 ∈ Ring ) |
| 57 |
|
fz1ssfz0 |
⊢ ( 1 ... 𝑁 ) ⊆ ( 0 ... 𝑁 ) |
| 58 |
57
|
a1i |
⊢ ( 𝜑 → ( 1 ... 𝑁 ) ⊆ ( 0 ... 𝑁 ) ) |
| 59 |
58
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 1 ... 𝑁 ) ) → 𝑘 ∈ ( 0 ... 𝑁 ) ) |
| 60 |
59 14
|
syldan |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 1 ... 𝑁 ) ) → ( 𝐷 ‘ 𝑘 ) ∈ 𝐵 ) |
| 61 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 1 ... 𝑁 ) ) → 𝐶 ∈ 𝐵 ) |
| 62 |
1 4 56 60 61
|
ringcld |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 1 ... 𝑁 ) ) → ( ( 𝐷 ‘ 𝑘 ) · 𝐶 ) ∈ 𝐵 ) |
| 63 |
|
c0ex |
⊢ 0 ∈ V |
| 64 |
63
|
a1i |
⊢ ( 𝜑 → 0 ∈ V ) |
| 65 |
|
0nnn |
⊢ ¬ 0 ∈ ℕ |
| 66 |
|
elfznn |
⊢ ( 0 ∈ ( 1 ... 𝑁 ) → 0 ∈ ℕ ) |
| 67 |
65 66
|
mto |
⊢ ¬ 0 ∈ ( 1 ... 𝑁 ) |
| 68 |
67
|
a1i |
⊢ ( 𝜑 → ¬ 0 ∈ ( 1 ... 𝑁 ) ) |
| 69 |
|
0elfz |
⊢ ( 𝑁 ∈ ℕ0 → 0 ∈ ( 0 ... 𝑁 ) ) |
| 70 |
8 69
|
syl |
⊢ ( 𝜑 → 0 ∈ ( 0 ... 𝑁 ) ) |
| 71 |
9 70
|
ffvelcdmd |
⊢ ( 𝜑 → ( 𝐷 ‘ 0 ) ∈ 𝐵 ) |
| 72 |
1 4 5 71 7
|
ringcld |
⊢ ( 𝜑 → ( ( 𝐷 ‘ 0 ) · 𝐶 ) ∈ 𝐵 ) |
| 73 |
|
fveq2 |
⊢ ( 𝑘 = 0 → ( 𝐷 ‘ 𝑘 ) = ( 𝐷 ‘ 0 ) ) |
| 74 |
73
|
oveq1d |
⊢ ( 𝑘 = 0 → ( ( 𝐷 ‘ 𝑘 ) · 𝐶 ) = ( ( 𝐷 ‘ 0 ) · 𝐶 ) ) |
| 75 |
1 2 12 55 62 64 68 72 74
|
gsumunsn |
⊢ ( 𝜑 → ( 𝑅 Σg ( 𝑘 ∈ ( ( 1 ... 𝑁 ) ∪ { 0 } ) ↦ ( ( 𝐷 ‘ 𝑘 ) · 𝐶 ) ) ) = ( ( 𝑅 Σg ( 𝑘 ∈ ( 1 ... 𝑁 ) ↦ ( ( 𝐷 ‘ 𝑘 ) · 𝐶 ) ) ) + ( ( 𝐷 ‘ 0 ) · 𝐶 ) ) ) |
| 76 |
|
nfcv |
⊢ Ⅎ 𝑘 ( ( 𝐷 ‘ ( 𝑙 + 1 ) ) · 𝐶 ) |
| 77 |
|
fveq2 |
⊢ ( 𝑘 = ( 𝑙 + 1 ) → ( 𝐷 ‘ 𝑘 ) = ( 𝐷 ‘ ( 𝑙 + 1 ) ) ) |
| 78 |
77
|
oveq1d |
⊢ ( 𝑘 = ( 𝑙 + 1 ) → ( ( 𝐷 ‘ 𝑘 ) · 𝐶 ) = ( ( 𝐷 ‘ ( 𝑙 + 1 ) ) · 𝐶 ) ) |
| 79 |
|
ssidd |
⊢ ( 𝜑 → 𝐵 ⊆ 𝐵 ) |
| 80 |
8
|
nn0zd |
⊢ ( 𝜑 → 𝑁 ∈ ℤ ) |
| 81 |
|
fzoval |
⊢ ( 𝑁 ∈ ℤ → ( 0 ..^ 𝑁 ) = ( 0 ... ( 𝑁 − 1 ) ) ) |
| 82 |
80 81
|
syl |
⊢ ( 𝜑 → ( 0 ..^ 𝑁 ) = ( 0 ... ( 𝑁 − 1 ) ) ) |
| 83 |
82
|
eleq2d |
⊢ ( 𝜑 → ( 𝑙 ∈ ( 0 ..^ 𝑁 ) ↔ 𝑙 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) ) |
| 84 |
83
|
biimpar |
⊢ ( ( 𝜑 ∧ 𝑙 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → 𝑙 ∈ ( 0 ..^ 𝑁 ) ) |
| 85 |
|
fz0add1fz1 |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑙 ∈ ( 0 ..^ 𝑁 ) ) → ( 𝑙 + 1 ) ∈ ( 1 ... 𝑁 ) ) |
| 86 |
8 84 85
|
syl2an2r |
⊢ ( ( 𝜑 ∧ 𝑙 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( 𝑙 + 1 ) ∈ ( 1 ... 𝑁 ) ) |
| 87 |
59
|
elfzelzd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 1 ... 𝑁 ) ) → 𝑘 ∈ ℤ ) |
| 88 |
80
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 1 ... 𝑁 ) ) → 𝑁 ∈ ℤ ) |
| 89 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 1 ... 𝑁 ) ) → 𝑘 ∈ ( 1 ... 𝑁 ) ) |
| 90 |
|
elfzm1b |
⊢ ( ( 𝑘 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑘 ∈ ( 1 ... 𝑁 ) ↔ ( 𝑘 − 1 ) ∈ ( 0 ... ( 𝑁 − 1 ) ) ) ) |
| 91 |
90
|
biimpa |
⊢ ( ( ( 𝑘 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ 𝑘 ∈ ( 1 ... 𝑁 ) ) → ( 𝑘 − 1 ) ∈ ( 0 ... ( 𝑁 − 1 ) ) ) |
| 92 |
87 88 89 91
|
syl21anc |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 1 ... 𝑁 ) ) → ( 𝑘 − 1 ) ∈ ( 0 ... ( 𝑁 − 1 ) ) ) |
| 93 |
|
eqcom |
⊢ ( ( 𝑙 + 1 ) = 𝑘 ↔ 𝑘 = ( 𝑙 + 1 ) ) |
| 94 |
|
elfznn0 |
⊢ ( 𝑙 ∈ ( 0 ... ( 𝑁 − 1 ) ) → 𝑙 ∈ ℕ0 ) |
| 95 |
94
|
nn0cnd |
⊢ ( 𝑙 ∈ ( 0 ... ( 𝑁 − 1 ) ) → 𝑙 ∈ ℂ ) |
| 96 |
95
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 1 ... 𝑁 ) ) ∧ 𝑙 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → 𝑙 ∈ ℂ ) |
| 97 |
|
1cnd |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 1 ... 𝑁 ) ) ∧ 𝑙 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → 1 ∈ ℂ ) |
| 98 |
87
|
zcnd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 1 ... 𝑁 ) ) → 𝑘 ∈ ℂ ) |
| 99 |
98
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 1 ... 𝑁 ) ) ∧ 𝑙 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → 𝑘 ∈ ℂ ) |
| 100 |
96 97 99
|
addlsub |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 1 ... 𝑁 ) ) ∧ 𝑙 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( ( 𝑙 + 1 ) = 𝑘 ↔ 𝑙 = ( 𝑘 − 1 ) ) ) |
| 101 |
93 100
|
bitr3id |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 1 ... 𝑁 ) ) ∧ 𝑙 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( 𝑘 = ( 𝑙 + 1 ) ↔ 𝑙 = ( 𝑘 − 1 ) ) ) |
| 102 |
92 101
|
reu6dv |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 1 ... 𝑁 ) ) → ∃! 𝑙 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑘 = ( 𝑙 + 1 ) ) |
| 103 |
76 1 24 78 12 55 79 62 86 102
|
gsummptf1o |
⊢ ( 𝜑 → ( 𝑅 Σg ( 𝑘 ∈ ( 1 ... 𝑁 ) ↦ ( ( 𝐷 ‘ 𝑘 ) · 𝐶 ) ) ) = ( 𝑅 Σg ( 𝑙 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ ( ( 𝐷 ‘ ( 𝑙 + 1 ) ) · 𝐶 ) ) ) ) |
| 104 |
|
fvoveq1 |
⊢ ( 𝑙 = 𝑘 → ( 𝐷 ‘ ( 𝑙 + 1 ) ) = ( 𝐷 ‘ ( 𝑘 + 1 ) ) ) |
| 105 |
104
|
oveq1d |
⊢ ( 𝑙 = 𝑘 → ( ( 𝐷 ‘ ( 𝑙 + 1 ) ) · 𝐶 ) = ( ( 𝐷 ‘ ( 𝑘 + 1 ) ) · 𝐶 ) ) |
| 106 |
105
|
cbvmptv |
⊢ ( 𝑙 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ ( ( 𝐷 ‘ ( 𝑙 + 1 ) ) · 𝐶 ) ) = ( 𝑘 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ ( ( 𝐷 ‘ ( 𝑘 + 1 ) ) · 𝐶 ) ) |
| 107 |
82
|
mpteq1d |
⊢ ( 𝜑 → ( 𝑘 ∈ ( 0 ..^ 𝑁 ) ↦ ( ( 𝐷 ‘ ( 𝑘 + 1 ) ) · 𝐶 ) ) = ( 𝑘 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ ( ( 𝐷 ‘ ( 𝑘 + 1 ) ) · 𝐶 ) ) ) |
| 108 |
106 107
|
eqtr4id |
⊢ ( 𝜑 → ( 𝑙 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ ( ( 𝐷 ‘ ( 𝑙 + 1 ) ) · 𝐶 ) ) = ( 𝑘 ∈ ( 0 ..^ 𝑁 ) ↦ ( ( 𝐷 ‘ ( 𝑘 + 1 ) ) · 𝐶 ) ) ) |
| 109 |
108
|
oveq2d |
⊢ ( 𝜑 → ( 𝑅 Σg ( 𝑙 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ ( ( 𝐷 ‘ ( 𝑙 + 1 ) ) · 𝐶 ) ) ) = ( 𝑅 Σg ( 𝑘 ∈ ( 0 ..^ 𝑁 ) ↦ ( ( 𝐷 ‘ ( 𝑘 + 1 ) ) · 𝐶 ) ) ) ) |
| 110 |
103 109
|
eqtrd |
⊢ ( 𝜑 → ( 𝑅 Σg ( 𝑘 ∈ ( 1 ... 𝑁 ) ↦ ( ( 𝐷 ‘ 𝑘 ) · 𝐶 ) ) ) = ( 𝑅 Σg ( 𝑘 ∈ ( 0 ..^ 𝑁 ) ↦ ( ( 𝐷 ‘ ( 𝑘 + 1 ) ) · 𝐶 ) ) ) ) |
| 111 |
110
|
oveq1d |
⊢ ( 𝜑 → ( ( 𝑅 Σg ( 𝑘 ∈ ( 1 ... 𝑁 ) ↦ ( ( 𝐷 ‘ 𝑘 ) · 𝐶 ) ) ) + ( ( 𝐷 ‘ 0 ) · 𝐶 ) ) = ( ( 𝑅 Σg ( 𝑘 ∈ ( 0 ..^ 𝑁 ) ↦ ( ( 𝐷 ‘ ( 𝑘 + 1 ) ) · 𝐶 ) ) ) + ( ( 𝐷 ‘ 0 ) · 𝐶 ) ) ) |
| 112 |
54 75 111
|
3eqtrd |
⊢ ( 𝜑 → ( 𝑅 Σg ( 𝑘 ∈ ( 0 ... 𝑁 ) ↦ ( ( 𝐷 ‘ 𝑘 ) · 𝐶 ) ) ) = ( ( 𝑅 Σg ( 𝑘 ∈ ( 0 ..^ 𝑁 ) ↦ ( ( 𝐷 ‘ ( 𝑘 + 1 ) ) · 𝐶 ) ) ) + ( ( 𝐷 ‘ 0 ) · 𝐶 ) ) ) |
| 113 |
48 112
|
eqtr3d |
⊢ ( 𝜑 → ( ( 𝑅 Σg ( 𝑘 ∈ ( 0 ... 𝑁 ) ↦ ( 𝐷 ‘ 𝑘 ) ) ) · 𝐶 ) = ( ( 𝑅 Σg ( 𝑘 ∈ ( 0 ..^ 𝑁 ) ↦ ( ( 𝐷 ‘ ( 𝑘 + 1 ) ) · 𝐶 ) ) ) + ( ( 𝐷 ‘ 0 ) · 𝐶 ) ) ) |
| 114 |
47 113
|
oveq12d |
⊢ ( 𝜑 → ( ( ( 𝑅 Σg ( 𝑘 ∈ ( 0 ... 𝑁 ) ↦ ( 𝐷 ‘ 𝑘 ) ) ) · 𝐴 ) − ( ( 𝑅 Σg ( 𝑘 ∈ ( 0 ... 𝑁 ) ↦ ( 𝐷 ‘ 𝑘 ) ) ) · 𝐶 ) ) = ( ( ( 𝑅 Σg ( 𝑘 ∈ ( 0 ..^ 𝑁 ) ↦ ( ( 𝐷 ‘ 𝑘 ) · 𝐴 ) ) ) + ( ( 𝐷 ‘ 𝑁 ) · 𝐴 ) ) − ( ( 𝑅 Σg ( 𝑘 ∈ ( 0 ..^ 𝑁 ) ↦ ( ( 𝐷 ‘ ( 𝑘 + 1 ) ) · 𝐶 ) ) ) + ( ( 𝐷 ‘ 0 ) · 𝐶 ) ) ) ) |
| 115 |
5
|
ringabld |
⊢ ( 𝜑 → 𝑅 ∈ Abel ) |
| 116 |
37
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑘 ∈ ( 0 ..^ 𝑁 ) ( ( 𝐷 ‘ 𝑘 ) · 𝐴 ) ∈ 𝐵 ) |
| 117 |
1 12 30 116
|
gsummptcl |
⊢ ( 𝜑 → ( 𝑅 Σg ( 𝑘 ∈ ( 0 ..^ 𝑁 ) ↦ ( ( 𝐷 ‘ 𝑘 ) · 𝐴 ) ) ) ∈ 𝐵 ) |
| 118 |
9
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ..^ 𝑁 ) ) → 𝐷 : ( 0 ... 𝑁 ) ⟶ 𝐵 ) |
| 119 |
|
fz0add1fz1 |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑘 ∈ ( 0 ..^ 𝑁 ) ) → ( 𝑘 + 1 ) ∈ ( 1 ... 𝑁 ) ) |
| 120 |
8 119
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ..^ 𝑁 ) ) → ( 𝑘 + 1 ) ∈ ( 1 ... 𝑁 ) ) |
| 121 |
57 120
|
sselid |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ..^ 𝑁 ) ) → ( 𝑘 + 1 ) ∈ ( 0 ... 𝑁 ) ) |
| 122 |
118 121
|
ffvelcdmd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ..^ 𝑁 ) ) → ( 𝐷 ‘ ( 𝑘 + 1 ) ) ∈ 𝐵 ) |
| 123 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ..^ 𝑁 ) ) → 𝐶 ∈ 𝐵 ) |
| 124 |
1 4 31 122 123
|
ringcld |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ..^ 𝑁 ) ) → ( ( 𝐷 ‘ ( 𝑘 + 1 ) ) · 𝐶 ) ∈ 𝐵 ) |
| 125 |
124
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑘 ∈ ( 0 ..^ 𝑁 ) ( ( 𝐷 ‘ ( 𝑘 + 1 ) ) · 𝐶 ) ∈ 𝐵 ) |
| 126 |
1 12 30 125
|
gsummptcl |
⊢ ( 𝜑 → ( 𝑅 Σg ( 𝑘 ∈ ( 0 ..^ 𝑁 ) ↦ ( ( 𝐷 ‘ ( 𝑘 + 1 ) ) · 𝐶 ) ) ) ∈ 𝐵 ) |
| 127 |
1 2 3
|
ablsub4 |
⊢ ( ( 𝑅 ∈ Abel ∧ ( ( 𝑅 Σg ( 𝑘 ∈ ( 0 ..^ 𝑁 ) ↦ ( ( 𝐷 ‘ 𝑘 ) · 𝐴 ) ) ) ∈ 𝐵 ∧ ( ( 𝐷 ‘ 𝑁 ) · 𝐴 ) ∈ 𝐵 ) ∧ ( ( 𝑅 Σg ( 𝑘 ∈ ( 0 ..^ 𝑁 ) ↦ ( ( 𝐷 ‘ ( 𝑘 + 1 ) ) · 𝐶 ) ) ) ∈ 𝐵 ∧ ( ( 𝐷 ‘ 0 ) · 𝐶 ) ∈ 𝐵 ) ) → ( ( ( 𝑅 Σg ( 𝑘 ∈ ( 0 ..^ 𝑁 ) ↦ ( ( 𝐷 ‘ 𝑘 ) · 𝐴 ) ) ) + ( ( 𝐷 ‘ 𝑁 ) · 𝐴 ) ) − ( ( 𝑅 Σg ( 𝑘 ∈ ( 0 ..^ 𝑁 ) ↦ ( ( 𝐷 ‘ ( 𝑘 + 1 ) ) · 𝐶 ) ) ) + ( ( 𝐷 ‘ 0 ) · 𝐶 ) ) ) = ( ( ( 𝑅 Σg ( 𝑘 ∈ ( 0 ..^ 𝑁 ) ↦ ( ( 𝐷 ‘ 𝑘 ) · 𝐴 ) ) ) − ( 𝑅 Σg ( 𝑘 ∈ ( 0 ..^ 𝑁 ) ↦ ( ( 𝐷 ‘ ( 𝑘 + 1 ) ) · 𝐶 ) ) ) ) + ( ( ( 𝐷 ‘ 𝑁 ) · 𝐴 ) − ( ( 𝐷 ‘ 0 ) · 𝐶 ) ) ) ) |
| 128 |
115 117 43 126 72 127
|
syl122anc |
⊢ ( 𝜑 → ( ( ( 𝑅 Σg ( 𝑘 ∈ ( 0 ..^ 𝑁 ) ↦ ( ( 𝐷 ‘ 𝑘 ) · 𝐴 ) ) ) + ( ( 𝐷 ‘ 𝑁 ) · 𝐴 ) ) − ( ( 𝑅 Σg ( 𝑘 ∈ ( 0 ..^ 𝑁 ) ↦ ( ( 𝐷 ‘ ( 𝑘 + 1 ) ) · 𝐶 ) ) ) + ( ( 𝐷 ‘ 0 ) · 𝐶 ) ) ) = ( ( ( 𝑅 Σg ( 𝑘 ∈ ( 0 ..^ 𝑁 ) ↦ ( ( 𝐷 ‘ 𝑘 ) · 𝐴 ) ) ) − ( 𝑅 Σg ( 𝑘 ∈ ( 0 ..^ 𝑁 ) ↦ ( ( 𝐷 ‘ ( 𝑘 + 1 ) ) · 𝐶 ) ) ) ) + ( ( ( 𝐷 ‘ 𝑁 ) · 𝐴 ) − ( ( 𝐷 ‘ 0 ) · 𝐶 ) ) ) ) |
| 129 |
17 114 128
|
3eqtrd |
⊢ ( 𝜑 → ( ( 𝑅 Σg ( 𝑘 ∈ ( 0 ... 𝑁 ) ↦ ( 𝐷 ‘ 𝑘 ) ) ) · ( 𝐴 − 𝐶 ) ) = ( ( ( 𝑅 Σg ( 𝑘 ∈ ( 0 ..^ 𝑁 ) ↦ ( ( 𝐷 ‘ 𝑘 ) · 𝐴 ) ) ) − ( 𝑅 Σg ( 𝑘 ∈ ( 0 ..^ 𝑁 ) ↦ ( ( 𝐷 ‘ ( 𝑘 + 1 ) ) · 𝐶 ) ) ) ) + ( ( ( 𝐷 ‘ 𝑁 ) · 𝐴 ) − ( ( 𝐷 ‘ 0 ) · 𝐶 ) ) ) ) |
| 130 |
9
|
feqmptd |
⊢ ( 𝜑 → 𝐷 = ( 𝑘 ∈ ( 0 ... 𝑁 ) ↦ ( 𝐷 ‘ 𝑘 ) ) ) |
| 131 |
130
|
oveq2d |
⊢ ( 𝜑 → ( 𝑅 Σg 𝐷 ) = ( 𝑅 Σg ( 𝑘 ∈ ( 0 ... 𝑁 ) ↦ ( 𝐷 ‘ 𝑘 ) ) ) ) |
| 132 |
131
|
oveq1d |
⊢ ( 𝜑 → ( ( 𝑅 Σg 𝐷 ) · ( 𝐴 − 𝐶 ) ) = ( ( 𝑅 Σg ( 𝑘 ∈ ( 0 ... 𝑁 ) ↦ ( 𝐷 ‘ 𝑘 ) ) ) · ( 𝐴 − 𝐶 ) ) ) |
| 133 |
11
|
mpteq2dva |
⊢ ( 𝜑 → ( 𝑘 ∈ ( 0 ..^ 𝑁 ) ↦ 𝐹 ) = ( 𝑘 ∈ ( 0 ..^ 𝑁 ) ↦ ( ( ( 𝐷 ‘ 𝑘 ) · 𝐴 ) − ( ( 𝐷 ‘ ( 𝑘 + 1 ) ) · 𝐶 ) ) ) ) |
| 134 |
133
|
oveq2d |
⊢ ( 𝜑 → ( 𝑅 Σg ( 𝑘 ∈ ( 0 ..^ 𝑁 ) ↦ 𝐹 ) ) = ( 𝑅 Σg ( 𝑘 ∈ ( 0 ..^ 𝑁 ) ↦ ( ( ( 𝐷 ‘ 𝑘 ) · 𝐴 ) − ( ( 𝐷 ‘ ( 𝑘 + 1 ) ) · 𝐶 ) ) ) ) ) |
| 135 |
|
eqid |
⊢ ( 𝑘 ∈ ( 0 ..^ 𝑁 ) ↦ ( ( 𝐷 ‘ 𝑘 ) · 𝐴 ) ) = ( 𝑘 ∈ ( 0 ..^ 𝑁 ) ↦ ( ( 𝐷 ‘ 𝑘 ) · 𝐴 ) ) |
| 136 |
|
eqid |
⊢ ( 𝑘 ∈ ( 0 ..^ 𝑁 ) ↦ ( ( 𝐷 ‘ ( 𝑘 + 1 ) ) · 𝐶 ) ) = ( 𝑘 ∈ ( 0 ..^ 𝑁 ) ↦ ( ( 𝐷 ‘ ( 𝑘 + 1 ) ) · 𝐶 ) ) |
| 137 |
1 3 115 30 37 124 135 136
|
gsummptfidmsub |
⊢ ( 𝜑 → ( 𝑅 Σg ( 𝑘 ∈ ( 0 ..^ 𝑁 ) ↦ ( ( ( 𝐷 ‘ 𝑘 ) · 𝐴 ) − ( ( 𝐷 ‘ ( 𝑘 + 1 ) ) · 𝐶 ) ) ) ) = ( ( 𝑅 Σg ( 𝑘 ∈ ( 0 ..^ 𝑁 ) ↦ ( ( 𝐷 ‘ 𝑘 ) · 𝐴 ) ) ) − ( 𝑅 Σg ( 𝑘 ∈ ( 0 ..^ 𝑁 ) ↦ ( ( 𝐷 ‘ ( 𝑘 + 1 ) ) · 𝐶 ) ) ) ) ) |
| 138 |
134 137
|
eqtrd |
⊢ ( 𝜑 → ( 𝑅 Σg ( 𝑘 ∈ ( 0 ..^ 𝑁 ) ↦ 𝐹 ) ) = ( ( 𝑅 Σg ( 𝑘 ∈ ( 0 ..^ 𝑁 ) ↦ ( ( 𝐷 ‘ 𝑘 ) · 𝐴 ) ) ) − ( 𝑅 Σg ( 𝑘 ∈ ( 0 ..^ 𝑁 ) ↦ ( ( 𝐷 ‘ ( 𝑘 + 1 ) ) · 𝐶 ) ) ) ) ) |
| 139 |
138 10
|
oveq12d |
⊢ ( 𝜑 → ( ( 𝑅 Σg ( 𝑘 ∈ ( 0 ..^ 𝑁 ) ↦ 𝐹 ) ) + 𝐸 ) = ( ( ( 𝑅 Σg ( 𝑘 ∈ ( 0 ..^ 𝑁 ) ↦ ( ( 𝐷 ‘ 𝑘 ) · 𝐴 ) ) ) − ( 𝑅 Σg ( 𝑘 ∈ ( 0 ..^ 𝑁 ) ↦ ( ( 𝐷 ‘ ( 𝑘 + 1 ) ) · 𝐶 ) ) ) ) + ( ( ( 𝐷 ‘ 𝑁 ) · 𝐴 ) − ( ( 𝐷 ‘ 0 ) · 𝐶 ) ) ) ) |
| 140 |
129 132 139
|
3eqtr4d |
⊢ ( 𝜑 → ( ( 𝑅 Σg 𝐷 ) · ( 𝐴 − 𝐶 ) ) = ( ( 𝑅 Σg ( 𝑘 ∈ ( 0 ..^ 𝑁 ) ↦ 𝐹 ) ) + 𝐸 ) ) |