Metamath Proof Explorer


Theorem gsumzadd

Description: The sum of two group sums. (Contributed by Mario Carneiro, 25-Apr-2016) (Revised by AV, 5-Jun-2019)

Ref Expression
Hypotheses gsumzadd.b
|- B = ( Base ` G )
gsumzadd.0
|- .0. = ( 0g ` G )
gsumzadd.p
|- .+ = ( +g ` G )
gsumzadd.z
|- Z = ( Cntz ` G )
gsumzadd.g
|- ( ph -> G e. Mnd )
gsumzadd.a
|- ( ph -> A e. V )
gsumzadd.fn
|- ( ph -> F finSupp .0. )
gsumzadd.hn
|- ( ph -> H finSupp .0. )
gsumzadd.s
|- ( ph -> S e. ( SubMnd ` G ) )
gsumzadd.c
|- ( ph -> S C_ ( Z ` S ) )
gsumzadd.f
|- ( ph -> F : A --> S )
gsumzadd.h
|- ( ph -> H : A --> S )
Assertion gsumzadd
|- ( ph -> ( G gsum ( F oF .+ H ) ) = ( ( G gsum F ) .+ ( G gsum H ) ) )

Proof

Step Hyp Ref Expression
1 gsumzadd.b
 |-  B = ( Base ` G )
2 gsumzadd.0
 |-  .0. = ( 0g ` G )
3 gsumzadd.p
 |-  .+ = ( +g ` G )
4 gsumzadd.z
 |-  Z = ( Cntz ` G )
5 gsumzadd.g
 |-  ( ph -> G e. Mnd )
6 gsumzadd.a
 |-  ( ph -> A e. V )
7 gsumzadd.fn
 |-  ( ph -> F finSupp .0. )
8 gsumzadd.hn
 |-  ( ph -> H finSupp .0. )
9 gsumzadd.s
 |-  ( ph -> S e. ( SubMnd ` G ) )
10 gsumzadd.c
 |-  ( ph -> S C_ ( Z ` S ) )
11 gsumzadd.f
 |-  ( ph -> F : A --> S )
12 gsumzadd.h
 |-  ( ph -> H : A --> S )
13 eqid
 |-  ( ( F u. H ) supp .0. ) = ( ( F u. H ) supp .0. )
14 1 submss
 |-  ( S e. ( SubMnd ` G ) -> S C_ B )
15 9 14 syl
 |-  ( ph -> S C_ B )
16 11 15 fssd
 |-  ( ph -> F : A --> B )
17 12 15 fssd
 |-  ( ph -> H : A --> B )
18 11 frnd
 |-  ( ph -> ran F C_ S )
19 4 cntzidss
 |-  ( ( S C_ ( Z ` S ) /\ ran F C_ S ) -> ran F C_ ( Z ` ran F ) )
20 10 18 19 syl2anc
 |-  ( ph -> ran F C_ ( Z ` ran F ) )
21 12 frnd
 |-  ( ph -> ran H C_ S )
22 4 cntzidss
 |-  ( ( S C_ ( Z ` S ) /\ ran H C_ S ) -> ran H C_ ( Z ` ran H ) )
23 10 21 22 syl2anc
 |-  ( ph -> ran H C_ ( Z ` ran H ) )
24 3 submcl
 |-  ( ( S e. ( SubMnd ` G ) /\ x e. S /\ y e. S ) -> ( x .+ y ) e. S )
25 24 3expb
 |-  ( ( S e. ( SubMnd ` G ) /\ ( x e. S /\ y e. S ) ) -> ( x .+ y ) e. S )
26 9 25 sylan
 |-  ( ( ph /\ ( x e. S /\ y e. S ) ) -> ( x .+ y ) e. S )
27 inidm
 |-  ( A i^i A ) = A
28 26 11 12 6 6 27 off
 |-  ( ph -> ( F oF .+ H ) : A --> S )
29 28 frnd
 |-  ( ph -> ran ( F oF .+ H ) C_ S )
30 4 cntzidss
 |-  ( ( S C_ ( Z ` S ) /\ ran ( F oF .+ H ) C_ S ) -> ran ( F oF .+ H ) C_ ( Z ` ran ( F oF .+ H ) ) )
31 10 29 30 syl2anc
 |-  ( ph -> ran ( F oF .+ H ) C_ ( Z ` ran ( F oF .+ H ) ) )
32 10 adantr
 |-  ( ( ph /\ ( x C_ A /\ k e. ( A \ x ) ) ) -> S C_ ( Z ` S ) )
33 15 adantr
 |-  ( ( ph /\ ( x C_ A /\ k e. ( A \ x ) ) ) -> S C_ B )
34 5 adantr
 |-  ( ( ph /\ ( x C_ A /\ k e. ( A \ x ) ) ) -> G e. Mnd )
35 vex
 |-  x e. _V
36 35 a1i
 |-  ( ( ph /\ ( x C_ A /\ k e. ( A \ x ) ) ) -> x e. _V )
37 9 adantr
 |-  ( ( ph /\ ( x C_ A /\ k e. ( A \ x ) ) ) -> S e. ( SubMnd ` G ) )
38 simpl
 |-  ( ( x C_ A /\ k e. ( A \ x ) ) -> x C_ A )
39 fssres
 |-  ( ( H : A --> S /\ x C_ A ) -> ( H |` x ) : x --> S )
40 12 38 39 syl2an
 |-  ( ( ph /\ ( x C_ A /\ k e. ( A \ x ) ) ) -> ( H |` x ) : x --> S )
41 23 adantr
 |-  ( ( ph /\ ( x C_ A /\ k e. ( A \ x ) ) ) -> ran H C_ ( Z ` ran H ) )
42 resss
 |-  ( H |` x ) C_ H
43 42 rnssi
 |-  ran ( H |` x ) C_ ran H
44 4 cntzidss
 |-  ( ( ran H C_ ( Z ` ran H ) /\ ran ( H |` x ) C_ ran H ) -> ran ( H |` x ) C_ ( Z ` ran ( H |` x ) ) )
45 41 43 44 sylancl
 |-  ( ( ph /\ ( x C_ A /\ k e. ( A \ x ) ) ) -> ran ( H |` x ) C_ ( Z ` ran ( H |` x ) ) )
46 12 ffund
 |-  ( ph -> Fun H )
47 46 funresd
 |-  ( ph -> Fun ( H |` x ) )
48 47 adantr
 |-  ( ( ph /\ ( x C_ A /\ k e. ( A \ x ) ) ) -> Fun ( H |` x ) )
49 8 fsuppimpd
 |-  ( ph -> ( H supp .0. ) e. Fin )
50 49 adantr
 |-  ( ( ph /\ ( x C_ A /\ k e. ( A \ x ) ) ) -> ( H supp .0. ) e. Fin )
51 12 6 fexd
 |-  ( ph -> H e. _V )
52 2 fvexi
 |-  .0. e. _V
53 ressuppss
 |-  ( ( H e. _V /\ .0. e. _V ) -> ( ( H |` x ) supp .0. ) C_ ( H supp .0. ) )
54 51 52 53 sylancl
 |-  ( ph -> ( ( H |` x ) supp .0. ) C_ ( H supp .0. ) )
55 54 adantr
 |-  ( ( ph /\ ( x C_ A /\ k e. ( A \ x ) ) ) -> ( ( H |` x ) supp .0. ) C_ ( H supp .0. ) )
56 50 55 ssfid
 |-  ( ( ph /\ ( x C_ A /\ k e. ( A \ x ) ) ) -> ( ( H |` x ) supp .0. ) e. Fin )
57 resfunexg
 |-  ( ( Fun H /\ x e. _V ) -> ( H |` x ) e. _V )
58 46 35 57 sylancl
 |-  ( ph -> ( H |` x ) e. _V )
59 isfsupp
 |-  ( ( ( H |` x ) e. _V /\ .0. e. _V ) -> ( ( H |` x ) finSupp .0. <-> ( Fun ( H |` x ) /\ ( ( H |` x ) supp .0. ) e. Fin ) ) )
60 58 52 59 sylancl
 |-  ( ph -> ( ( H |` x ) finSupp .0. <-> ( Fun ( H |` x ) /\ ( ( H |` x ) supp .0. ) e. Fin ) ) )
61 60 adantr
 |-  ( ( ph /\ ( x C_ A /\ k e. ( A \ x ) ) ) -> ( ( H |` x ) finSupp .0. <-> ( Fun ( H |` x ) /\ ( ( H |` x ) supp .0. ) e. Fin ) ) )
62 48 56 61 mpbir2and
 |-  ( ( ph /\ ( x C_ A /\ k e. ( A \ x ) ) ) -> ( H |` x ) finSupp .0. )
63 2 4 34 36 37 40 45 62 gsumzsubmcl
 |-  ( ( ph /\ ( x C_ A /\ k e. ( A \ x ) ) ) -> ( G gsum ( H |` x ) ) e. S )
64 63 snssd
 |-  ( ( ph /\ ( x C_ A /\ k e. ( A \ x ) ) ) -> { ( G gsum ( H |` x ) ) } C_ S )
65 1 4 cntz2ss
 |-  ( ( S C_ B /\ { ( G gsum ( H |` x ) ) } C_ S ) -> ( Z ` S ) C_ ( Z ` { ( G gsum ( H |` x ) ) } ) )
66 33 64 65 syl2anc
 |-  ( ( ph /\ ( x C_ A /\ k e. ( A \ x ) ) ) -> ( Z ` S ) C_ ( Z ` { ( G gsum ( H |` x ) ) } ) )
67 32 66 sstrd
 |-  ( ( ph /\ ( x C_ A /\ k e. ( A \ x ) ) ) -> S C_ ( Z ` { ( G gsum ( H |` x ) ) } ) )
68 eldifi
 |-  ( k e. ( A \ x ) -> k e. A )
69 68 adantl
 |-  ( ( x C_ A /\ k e. ( A \ x ) ) -> k e. A )
70 ffvelrn
 |-  ( ( F : A --> S /\ k e. A ) -> ( F ` k ) e. S )
71 11 69 70 syl2an
 |-  ( ( ph /\ ( x C_ A /\ k e. ( A \ x ) ) ) -> ( F ` k ) e. S )
72 67 71 sseldd
 |-  ( ( ph /\ ( x C_ A /\ k e. ( A \ x ) ) ) -> ( F ` k ) e. ( Z ` { ( G gsum ( H |` x ) ) } ) )
73 1 2 3 4 5 6 7 8 13 16 17 20 23 31 72 gsumzaddlem
 |-  ( ph -> ( G gsum ( F oF .+ H ) ) = ( ( G gsum F ) .+ ( G gsum H ) ) )