Step |
Hyp |
Ref |
Expression |
1 |
|
gsumzadd.b |
|- B = ( Base ` G ) |
2 |
|
gsumzadd.0 |
|- .0. = ( 0g ` G ) |
3 |
|
gsumzadd.p |
|- .+ = ( +g ` G ) |
4 |
|
gsumzadd.z |
|- Z = ( Cntz ` G ) |
5 |
|
gsumzadd.g |
|- ( ph -> G e. Mnd ) |
6 |
|
gsumzadd.a |
|- ( ph -> A e. V ) |
7 |
|
gsumzadd.fn |
|- ( ph -> F finSupp .0. ) |
8 |
|
gsumzadd.hn |
|- ( ph -> H finSupp .0. ) |
9 |
|
gsumzadd.s |
|- ( ph -> S e. ( SubMnd ` G ) ) |
10 |
|
gsumzadd.c |
|- ( ph -> S C_ ( Z ` S ) ) |
11 |
|
gsumzadd.f |
|- ( ph -> F : A --> S ) |
12 |
|
gsumzadd.h |
|- ( ph -> H : A --> S ) |
13 |
|
eqid |
|- ( ( F u. H ) supp .0. ) = ( ( F u. H ) supp .0. ) |
14 |
1
|
submss |
|- ( S e. ( SubMnd ` G ) -> S C_ B ) |
15 |
9 14
|
syl |
|- ( ph -> S C_ B ) |
16 |
11 15
|
fssd |
|- ( ph -> F : A --> B ) |
17 |
12 15
|
fssd |
|- ( ph -> H : A --> B ) |
18 |
11
|
frnd |
|- ( ph -> ran F C_ S ) |
19 |
4
|
cntzidss |
|- ( ( S C_ ( Z ` S ) /\ ran F C_ S ) -> ran F C_ ( Z ` ran F ) ) |
20 |
10 18 19
|
syl2anc |
|- ( ph -> ran F C_ ( Z ` ran F ) ) |
21 |
12
|
frnd |
|- ( ph -> ran H C_ S ) |
22 |
4
|
cntzidss |
|- ( ( S C_ ( Z ` S ) /\ ran H C_ S ) -> ran H C_ ( Z ` ran H ) ) |
23 |
10 21 22
|
syl2anc |
|- ( ph -> ran H C_ ( Z ` ran H ) ) |
24 |
3
|
submcl |
|- ( ( S e. ( SubMnd ` G ) /\ x e. S /\ y e. S ) -> ( x .+ y ) e. S ) |
25 |
24
|
3expb |
|- ( ( S e. ( SubMnd ` G ) /\ ( x e. S /\ y e. S ) ) -> ( x .+ y ) e. S ) |
26 |
9 25
|
sylan |
|- ( ( ph /\ ( x e. S /\ y e. S ) ) -> ( x .+ y ) e. S ) |
27 |
|
inidm |
|- ( A i^i A ) = A |
28 |
26 11 12 6 6 27
|
off |
|- ( ph -> ( F oF .+ H ) : A --> S ) |
29 |
28
|
frnd |
|- ( ph -> ran ( F oF .+ H ) C_ S ) |
30 |
4
|
cntzidss |
|- ( ( S C_ ( Z ` S ) /\ ran ( F oF .+ H ) C_ S ) -> ran ( F oF .+ H ) C_ ( Z ` ran ( F oF .+ H ) ) ) |
31 |
10 29 30
|
syl2anc |
|- ( ph -> ran ( F oF .+ H ) C_ ( Z ` ran ( F oF .+ H ) ) ) |
32 |
10
|
adantr |
|- ( ( ph /\ ( x C_ A /\ k e. ( A \ x ) ) ) -> S C_ ( Z ` S ) ) |
33 |
15
|
adantr |
|- ( ( ph /\ ( x C_ A /\ k e. ( A \ x ) ) ) -> S C_ B ) |
34 |
5
|
adantr |
|- ( ( ph /\ ( x C_ A /\ k e. ( A \ x ) ) ) -> G e. Mnd ) |
35 |
|
vex |
|- x e. _V |
36 |
35
|
a1i |
|- ( ( ph /\ ( x C_ A /\ k e. ( A \ x ) ) ) -> x e. _V ) |
37 |
9
|
adantr |
|- ( ( ph /\ ( x C_ A /\ k e. ( A \ x ) ) ) -> S e. ( SubMnd ` G ) ) |
38 |
|
simpl |
|- ( ( x C_ A /\ k e. ( A \ x ) ) -> x C_ A ) |
39 |
|
fssres |
|- ( ( H : A --> S /\ x C_ A ) -> ( H |` x ) : x --> S ) |
40 |
12 38 39
|
syl2an |
|- ( ( ph /\ ( x C_ A /\ k e. ( A \ x ) ) ) -> ( H |` x ) : x --> S ) |
41 |
23
|
adantr |
|- ( ( ph /\ ( x C_ A /\ k e. ( A \ x ) ) ) -> ran H C_ ( Z ` ran H ) ) |
42 |
|
resss |
|- ( H |` x ) C_ H |
43 |
42
|
rnssi |
|- ran ( H |` x ) C_ ran H |
44 |
4
|
cntzidss |
|- ( ( ran H C_ ( Z ` ran H ) /\ ran ( H |` x ) C_ ran H ) -> ran ( H |` x ) C_ ( Z ` ran ( H |` x ) ) ) |
45 |
41 43 44
|
sylancl |
|- ( ( ph /\ ( x C_ A /\ k e. ( A \ x ) ) ) -> ran ( H |` x ) C_ ( Z ` ran ( H |` x ) ) ) |
46 |
12
|
ffund |
|- ( ph -> Fun H ) |
47 |
46
|
funresd |
|- ( ph -> Fun ( H |` x ) ) |
48 |
47
|
adantr |
|- ( ( ph /\ ( x C_ A /\ k e. ( A \ x ) ) ) -> Fun ( H |` x ) ) |
49 |
8
|
fsuppimpd |
|- ( ph -> ( H supp .0. ) e. Fin ) |
50 |
49
|
adantr |
|- ( ( ph /\ ( x C_ A /\ k e. ( A \ x ) ) ) -> ( H supp .0. ) e. Fin ) |
51 |
12 6
|
fexd |
|- ( ph -> H e. _V ) |
52 |
2
|
fvexi |
|- .0. e. _V |
53 |
|
ressuppss |
|- ( ( H e. _V /\ .0. e. _V ) -> ( ( H |` x ) supp .0. ) C_ ( H supp .0. ) ) |
54 |
51 52 53
|
sylancl |
|- ( ph -> ( ( H |` x ) supp .0. ) C_ ( H supp .0. ) ) |
55 |
54
|
adantr |
|- ( ( ph /\ ( x C_ A /\ k e. ( A \ x ) ) ) -> ( ( H |` x ) supp .0. ) C_ ( H supp .0. ) ) |
56 |
50 55
|
ssfid |
|- ( ( ph /\ ( x C_ A /\ k e. ( A \ x ) ) ) -> ( ( H |` x ) supp .0. ) e. Fin ) |
57 |
|
resfunexg |
|- ( ( Fun H /\ x e. _V ) -> ( H |` x ) e. _V ) |
58 |
46 35 57
|
sylancl |
|- ( ph -> ( H |` x ) e. _V ) |
59 |
|
isfsupp |
|- ( ( ( H |` x ) e. _V /\ .0. e. _V ) -> ( ( H |` x ) finSupp .0. <-> ( Fun ( H |` x ) /\ ( ( H |` x ) supp .0. ) e. Fin ) ) ) |
60 |
58 52 59
|
sylancl |
|- ( ph -> ( ( H |` x ) finSupp .0. <-> ( Fun ( H |` x ) /\ ( ( H |` x ) supp .0. ) e. Fin ) ) ) |
61 |
60
|
adantr |
|- ( ( ph /\ ( x C_ A /\ k e. ( A \ x ) ) ) -> ( ( H |` x ) finSupp .0. <-> ( Fun ( H |` x ) /\ ( ( H |` x ) supp .0. ) e. Fin ) ) ) |
62 |
48 56 61
|
mpbir2and |
|- ( ( ph /\ ( x C_ A /\ k e. ( A \ x ) ) ) -> ( H |` x ) finSupp .0. ) |
63 |
2 4 34 36 37 40 45 62
|
gsumzsubmcl |
|- ( ( ph /\ ( x C_ A /\ k e. ( A \ x ) ) ) -> ( G gsum ( H |` x ) ) e. S ) |
64 |
63
|
snssd |
|- ( ( ph /\ ( x C_ A /\ k e. ( A \ x ) ) ) -> { ( G gsum ( H |` x ) ) } C_ S ) |
65 |
1 4
|
cntz2ss |
|- ( ( S C_ B /\ { ( G gsum ( H |` x ) ) } C_ S ) -> ( Z ` S ) C_ ( Z ` { ( G gsum ( H |` x ) ) } ) ) |
66 |
33 64 65
|
syl2anc |
|- ( ( ph /\ ( x C_ A /\ k e. ( A \ x ) ) ) -> ( Z ` S ) C_ ( Z ` { ( G gsum ( H |` x ) ) } ) ) |
67 |
32 66
|
sstrd |
|- ( ( ph /\ ( x C_ A /\ k e. ( A \ x ) ) ) -> S C_ ( Z ` { ( G gsum ( H |` x ) ) } ) ) |
68 |
|
eldifi |
|- ( k e. ( A \ x ) -> k e. A ) |
69 |
68
|
adantl |
|- ( ( x C_ A /\ k e. ( A \ x ) ) -> k e. A ) |
70 |
|
ffvelrn |
|- ( ( F : A --> S /\ k e. A ) -> ( F ` k ) e. S ) |
71 |
11 69 70
|
syl2an |
|- ( ( ph /\ ( x C_ A /\ k e. ( A \ x ) ) ) -> ( F ` k ) e. S ) |
72 |
67 71
|
sseldd |
|- ( ( ph /\ ( x C_ A /\ k e. ( A \ x ) ) ) -> ( F ` k ) e. ( Z ` { ( G gsum ( H |` x ) ) } ) ) |
73 |
1 2 3 4 5 6 7 8 13 16 17 20 23 31 72
|
gsumzaddlem |
|- ( ph -> ( G gsum ( F oF .+ H ) ) = ( ( G gsum F ) .+ ( G gsum H ) ) ) |