| Step |
Hyp |
Ref |
Expression |
| 1 |
|
addcl |
|- ( ( A e. CC /\ B e. CC ) -> ( A + B ) e. CC ) |
| 2 |
1
|
anim1i |
|- ( ( ( A e. CC /\ B e. CC ) /\ T : ~H --> ~H ) -> ( ( A + B ) e. CC /\ T : ~H --> ~H ) ) |
| 3 |
2
|
3impa |
|- ( ( A e. CC /\ B e. CC /\ T : ~H --> ~H ) -> ( ( A + B ) e. CC /\ T : ~H --> ~H ) ) |
| 4 |
|
homval |
|- ( ( ( A + B ) e. CC /\ T : ~H --> ~H /\ x e. ~H ) -> ( ( ( A + B ) .op T ) ` x ) = ( ( A + B ) .h ( T ` x ) ) ) |
| 5 |
4
|
3expa |
|- ( ( ( ( A + B ) e. CC /\ T : ~H --> ~H ) /\ x e. ~H ) -> ( ( ( A + B ) .op T ) ` x ) = ( ( A + B ) .h ( T ` x ) ) ) |
| 6 |
3 5
|
sylan |
|- ( ( ( A e. CC /\ B e. CC /\ T : ~H --> ~H ) /\ x e. ~H ) -> ( ( ( A + B ) .op T ) ` x ) = ( ( A + B ) .h ( T ` x ) ) ) |
| 7 |
|
homval |
|- ( ( A e. CC /\ T : ~H --> ~H /\ x e. ~H ) -> ( ( A .op T ) ` x ) = ( A .h ( T ` x ) ) ) |
| 8 |
7
|
3expa |
|- ( ( ( A e. CC /\ T : ~H --> ~H ) /\ x e. ~H ) -> ( ( A .op T ) ` x ) = ( A .h ( T ` x ) ) ) |
| 9 |
8
|
3adantl2 |
|- ( ( ( A e. CC /\ B e. CC /\ T : ~H --> ~H ) /\ x e. ~H ) -> ( ( A .op T ) ` x ) = ( A .h ( T ` x ) ) ) |
| 10 |
|
homval |
|- ( ( B e. CC /\ T : ~H --> ~H /\ x e. ~H ) -> ( ( B .op T ) ` x ) = ( B .h ( T ` x ) ) ) |
| 11 |
10
|
3expa |
|- ( ( ( B e. CC /\ T : ~H --> ~H ) /\ x e. ~H ) -> ( ( B .op T ) ` x ) = ( B .h ( T ` x ) ) ) |
| 12 |
11
|
3adantl1 |
|- ( ( ( A e. CC /\ B e. CC /\ T : ~H --> ~H ) /\ x e. ~H ) -> ( ( B .op T ) ` x ) = ( B .h ( T ` x ) ) ) |
| 13 |
9 12
|
oveq12d |
|- ( ( ( A e. CC /\ B e. CC /\ T : ~H --> ~H ) /\ x e. ~H ) -> ( ( ( A .op T ) ` x ) +h ( ( B .op T ) ` x ) ) = ( ( A .h ( T ` x ) ) +h ( B .h ( T ` x ) ) ) ) |
| 14 |
|
ffvelcdm |
|- ( ( T : ~H --> ~H /\ x e. ~H ) -> ( T ` x ) e. ~H ) |
| 15 |
|
ax-hvdistr2 |
|- ( ( A e. CC /\ B e. CC /\ ( T ` x ) e. ~H ) -> ( ( A + B ) .h ( T ` x ) ) = ( ( A .h ( T ` x ) ) +h ( B .h ( T ` x ) ) ) ) |
| 16 |
14 15
|
syl3an3 |
|- ( ( A e. CC /\ B e. CC /\ ( T : ~H --> ~H /\ x e. ~H ) ) -> ( ( A + B ) .h ( T ` x ) ) = ( ( A .h ( T ` x ) ) +h ( B .h ( T ` x ) ) ) ) |
| 17 |
16
|
3exp |
|- ( A e. CC -> ( B e. CC -> ( ( T : ~H --> ~H /\ x e. ~H ) -> ( ( A + B ) .h ( T ` x ) ) = ( ( A .h ( T ` x ) ) +h ( B .h ( T ` x ) ) ) ) ) ) |
| 18 |
17
|
exp4a |
|- ( A e. CC -> ( B e. CC -> ( T : ~H --> ~H -> ( x e. ~H -> ( ( A + B ) .h ( T ` x ) ) = ( ( A .h ( T ` x ) ) +h ( B .h ( T ` x ) ) ) ) ) ) ) |
| 19 |
18
|
3imp1 |
|- ( ( ( A e. CC /\ B e. CC /\ T : ~H --> ~H ) /\ x e. ~H ) -> ( ( A + B ) .h ( T ` x ) ) = ( ( A .h ( T ` x ) ) +h ( B .h ( T ` x ) ) ) ) |
| 20 |
13 19
|
eqtr4d |
|- ( ( ( A e. CC /\ B e. CC /\ T : ~H --> ~H ) /\ x e. ~H ) -> ( ( ( A .op T ) ` x ) +h ( ( B .op T ) ` x ) ) = ( ( A + B ) .h ( T ` x ) ) ) |
| 21 |
6 20
|
eqtr4d |
|- ( ( ( A e. CC /\ B e. CC /\ T : ~H --> ~H ) /\ x e. ~H ) -> ( ( ( A + B ) .op T ) ` x ) = ( ( ( A .op T ) ` x ) +h ( ( B .op T ) ` x ) ) ) |
| 22 |
|
homulcl |
|- ( ( A e. CC /\ T : ~H --> ~H ) -> ( A .op T ) : ~H --> ~H ) |
| 23 |
|
homulcl |
|- ( ( B e. CC /\ T : ~H --> ~H ) -> ( B .op T ) : ~H --> ~H ) |
| 24 |
22 23
|
anim12i |
|- ( ( ( A e. CC /\ T : ~H --> ~H ) /\ ( B e. CC /\ T : ~H --> ~H ) ) -> ( ( A .op T ) : ~H --> ~H /\ ( B .op T ) : ~H --> ~H ) ) |
| 25 |
24
|
3impdir |
|- ( ( A e. CC /\ B e. CC /\ T : ~H --> ~H ) -> ( ( A .op T ) : ~H --> ~H /\ ( B .op T ) : ~H --> ~H ) ) |
| 26 |
|
hosval |
|- ( ( ( A .op T ) : ~H --> ~H /\ ( B .op T ) : ~H --> ~H /\ x e. ~H ) -> ( ( ( A .op T ) +op ( B .op T ) ) ` x ) = ( ( ( A .op T ) ` x ) +h ( ( B .op T ) ` x ) ) ) |
| 27 |
26
|
3expa |
|- ( ( ( ( A .op T ) : ~H --> ~H /\ ( B .op T ) : ~H --> ~H ) /\ x e. ~H ) -> ( ( ( A .op T ) +op ( B .op T ) ) ` x ) = ( ( ( A .op T ) ` x ) +h ( ( B .op T ) ` x ) ) ) |
| 28 |
25 27
|
sylan |
|- ( ( ( A e. CC /\ B e. CC /\ T : ~H --> ~H ) /\ x e. ~H ) -> ( ( ( A .op T ) +op ( B .op T ) ) ` x ) = ( ( ( A .op T ) ` x ) +h ( ( B .op T ) ` x ) ) ) |
| 29 |
21 28
|
eqtr4d |
|- ( ( ( A e. CC /\ B e. CC /\ T : ~H --> ~H ) /\ x e. ~H ) -> ( ( ( A + B ) .op T ) ` x ) = ( ( ( A .op T ) +op ( B .op T ) ) ` x ) ) |
| 30 |
29
|
ralrimiva |
|- ( ( A e. CC /\ B e. CC /\ T : ~H --> ~H ) -> A. x e. ~H ( ( ( A + B ) .op T ) ` x ) = ( ( ( A .op T ) +op ( B .op T ) ) ` x ) ) |
| 31 |
|
homulcl |
|- ( ( ( A + B ) e. CC /\ T : ~H --> ~H ) -> ( ( A + B ) .op T ) : ~H --> ~H ) |
| 32 |
1 31
|
stoic3 |
|- ( ( A e. CC /\ B e. CC /\ T : ~H --> ~H ) -> ( ( A + B ) .op T ) : ~H --> ~H ) |
| 33 |
|
hoaddcl |
|- ( ( ( A .op T ) : ~H --> ~H /\ ( B .op T ) : ~H --> ~H ) -> ( ( A .op T ) +op ( B .op T ) ) : ~H --> ~H ) |
| 34 |
22 23 33
|
syl2an |
|- ( ( ( A e. CC /\ T : ~H --> ~H ) /\ ( B e. CC /\ T : ~H --> ~H ) ) -> ( ( A .op T ) +op ( B .op T ) ) : ~H --> ~H ) |
| 35 |
34
|
3impdir |
|- ( ( A e. CC /\ B e. CC /\ T : ~H --> ~H ) -> ( ( A .op T ) +op ( B .op T ) ) : ~H --> ~H ) |
| 36 |
|
hoeq |
|- ( ( ( ( A + B ) .op T ) : ~H --> ~H /\ ( ( A .op T ) +op ( B .op T ) ) : ~H --> ~H ) -> ( A. x e. ~H ( ( ( A + B ) .op T ) ` x ) = ( ( ( A .op T ) +op ( B .op T ) ) ` x ) <-> ( ( A + B ) .op T ) = ( ( A .op T ) +op ( B .op T ) ) ) ) |
| 37 |
32 35 36
|
syl2anc |
|- ( ( A e. CC /\ B e. CC /\ T : ~H --> ~H ) -> ( A. x e. ~H ( ( ( A + B ) .op T ) ` x ) = ( ( ( A .op T ) +op ( B .op T ) ) ` x ) <-> ( ( A + B ) .op T ) = ( ( A .op T ) +op ( B .op T ) ) ) ) |
| 38 |
30 37
|
mpbid |
|- ( ( A e. CC /\ B e. CC /\ T : ~H --> ~H ) -> ( ( A + B ) .op T ) = ( ( A .op T ) +op ( B .op T ) ) ) |