Description: Scalar product reverse distributive law for Hilbert space operators. (Contributed by NM, 25-Aug-2006) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Assertion | hoadddir | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | addcl | |
|
2 | 1 | anim1i | |
3 | 2 | 3impa | |
4 | homval | |
|
5 | 4 | 3expa | |
6 | 3 5 | sylan | |
7 | homval | |
|
8 | 7 | 3expa | |
9 | 8 | 3adantl2 | |
10 | homval | |
|
11 | 10 | 3expa | |
12 | 11 | 3adantl1 | |
13 | 9 12 | oveq12d | |
14 | ffvelcdm | |
|
15 | ax-hvdistr2 | |
|
16 | 14 15 | syl3an3 | |
17 | 16 | 3exp | |
18 | 17 | exp4a | |
19 | 18 | 3imp1 | |
20 | 13 19 | eqtr4d | |
21 | 6 20 | eqtr4d | |
22 | homulcl | |
|
23 | homulcl | |
|
24 | 22 23 | anim12i | |
25 | 24 | 3impdir | |
26 | hosval | |
|
27 | 26 | 3expa | |
28 | 25 27 | sylan | |
29 | 21 28 | eqtr4d | |
30 | 29 | ralrimiva | |
31 | homulcl | |
|
32 | 1 31 | stoic3 | |
33 | hoaddcl | |
|
34 | 22 23 33 | syl2an | |
35 | 34 | 3impdir | |
36 | hoeq | |
|
37 | 32 35 36 | syl2anc | |
38 | 30 37 | mpbid | |