| Step | Hyp | Ref | Expression | 
						
							| 1 |  | hoiqssbllem1.i |  |-  F/ i ph | 
						
							| 2 |  | hoiqssbllem1.x |  |-  ( ph -> X e. Fin ) | 
						
							| 3 |  | hoiqssbllem1.n |  |-  ( ph -> X =/= (/) ) | 
						
							| 4 |  | hoiqssbllem1.y |  |-  ( ph -> Y e. ( RR ^m X ) ) | 
						
							| 5 |  | hoiqssbllem1.c |  |-  ( ph -> C : X --> RR ) | 
						
							| 6 |  | hoiqssbllem1.d |  |-  ( ph -> D : X --> RR ) | 
						
							| 7 |  | hoiqssbllem1.e |  |-  ( ph -> E e. RR+ ) | 
						
							| 8 |  | hoiqssbllem1.l |  |-  ( ( ph /\ i e. X ) -> ( C ` i ) e. ( ( ( Y ` i ) - ( E / ( 2 x. ( sqrt ` ( # ` X ) ) ) ) ) (,) ( Y ` i ) ) ) | 
						
							| 9 |  | hoiqssbllem1.r |  |-  ( ( ph /\ i e. X ) -> ( D ` i ) e. ( ( Y ` i ) (,) ( ( Y ` i ) + ( E / ( 2 x. ( sqrt ` ( # ` X ) ) ) ) ) ) ) | 
						
							| 10 | 4 | elexd |  |-  ( ph -> Y e. _V ) | 
						
							| 11 |  | elmapfn |  |-  ( Y e. ( RR ^m X ) -> Y Fn X ) | 
						
							| 12 | 4 11 | syl |  |-  ( ph -> Y Fn X ) | 
						
							| 13 | 5 | ffvelcdmda |  |-  ( ( ph /\ i e. X ) -> ( C ` i ) e. RR ) | 
						
							| 14 | 13 | rexrd |  |-  ( ( ph /\ i e. X ) -> ( C ` i ) e. RR* ) | 
						
							| 15 | 6 | ffvelcdmda |  |-  ( ( ph /\ i e. X ) -> ( D ` i ) e. RR ) | 
						
							| 16 | 15 | rexrd |  |-  ( ( ph /\ i e. X ) -> ( D ` i ) e. RR* ) | 
						
							| 17 |  | elmapi |  |-  ( Y e. ( RR ^m X ) -> Y : X --> RR ) | 
						
							| 18 | 4 17 | syl |  |-  ( ph -> Y : X --> RR ) | 
						
							| 19 | 18 | ffvelcdmda |  |-  ( ( ph /\ i e. X ) -> ( Y ` i ) e. RR ) | 
						
							| 20 | 19 | rexrd |  |-  ( ( ph /\ i e. X ) -> ( Y ` i ) e. RR* ) | 
						
							| 21 |  | 2rp |  |-  2 e. RR+ | 
						
							| 22 | 21 | a1i |  |-  ( ph -> 2 e. RR+ ) | 
						
							| 23 |  | hashnncl |  |-  ( X e. Fin -> ( ( # ` X ) e. NN <-> X =/= (/) ) ) | 
						
							| 24 | 2 23 | syl |  |-  ( ph -> ( ( # ` X ) e. NN <-> X =/= (/) ) ) | 
						
							| 25 | 3 24 | mpbird |  |-  ( ph -> ( # ` X ) e. NN ) | 
						
							| 26 | 25 | nnred |  |-  ( ph -> ( # ` X ) e. RR ) | 
						
							| 27 | 25 | nngt0d |  |-  ( ph -> 0 < ( # ` X ) ) | 
						
							| 28 | 26 27 | elrpd |  |-  ( ph -> ( # ` X ) e. RR+ ) | 
						
							| 29 | 28 | rpsqrtcld |  |-  ( ph -> ( sqrt ` ( # ` X ) ) e. RR+ ) | 
						
							| 30 | 22 29 | rpmulcld |  |-  ( ph -> ( 2 x. ( sqrt ` ( # ` X ) ) ) e. RR+ ) | 
						
							| 31 | 7 30 | rpdivcld |  |-  ( ph -> ( E / ( 2 x. ( sqrt ` ( # ` X ) ) ) ) e. RR+ ) | 
						
							| 32 | 31 | rpred |  |-  ( ph -> ( E / ( 2 x. ( sqrt ` ( # ` X ) ) ) ) e. RR ) | 
						
							| 33 | 32 | adantr |  |-  ( ( ph /\ i e. X ) -> ( E / ( 2 x. ( sqrt ` ( # ` X ) ) ) ) e. RR ) | 
						
							| 34 | 19 33 | resubcld |  |-  ( ( ph /\ i e. X ) -> ( ( Y ` i ) - ( E / ( 2 x. ( sqrt ` ( # ` X ) ) ) ) ) e. RR ) | 
						
							| 35 | 34 | rexrd |  |-  ( ( ph /\ i e. X ) -> ( ( Y ` i ) - ( E / ( 2 x. ( sqrt ` ( # ` X ) ) ) ) ) e. RR* ) | 
						
							| 36 |  | iooltub |  |-  ( ( ( ( Y ` i ) - ( E / ( 2 x. ( sqrt ` ( # ` X ) ) ) ) ) e. RR* /\ ( Y ` i ) e. RR* /\ ( C ` i ) e. ( ( ( Y ` i ) - ( E / ( 2 x. ( sqrt ` ( # ` X ) ) ) ) ) (,) ( Y ` i ) ) ) -> ( C ` i ) < ( Y ` i ) ) | 
						
							| 37 | 35 20 8 36 | syl3anc |  |-  ( ( ph /\ i e. X ) -> ( C ` i ) < ( Y ` i ) ) | 
						
							| 38 | 13 19 37 | ltled |  |-  ( ( ph /\ i e. X ) -> ( C ` i ) <_ ( Y ` i ) ) | 
						
							| 39 | 19 33 | readdcld |  |-  ( ( ph /\ i e. X ) -> ( ( Y ` i ) + ( E / ( 2 x. ( sqrt ` ( # ` X ) ) ) ) ) e. RR ) | 
						
							| 40 | 39 | rexrd |  |-  ( ( ph /\ i e. X ) -> ( ( Y ` i ) + ( E / ( 2 x. ( sqrt ` ( # ` X ) ) ) ) ) e. RR* ) | 
						
							| 41 |  | ioogtlb |  |-  ( ( ( Y ` i ) e. RR* /\ ( ( Y ` i ) + ( E / ( 2 x. ( sqrt ` ( # ` X ) ) ) ) ) e. RR* /\ ( D ` i ) e. ( ( Y ` i ) (,) ( ( Y ` i ) + ( E / ( 2 x. ( sqrt ` ( # ` X ) ) ) ) ) ) ) -> ( Y ` i ) < ( D ` i ) ) | 
						
							| 42 | 20 40 9 41 | syl3anc |  |-  ( ( ph /\ i e. X ) -> ( Y ` i ) < ( D ` i ) ) | 
						
							| 43 | 14 16 20 38 42 | elicod |  |-  ( ( ph /\ i e. X ) -> ( Y ` i ) e. ( ( C ` i ) [,) ( D ` i ) ) ) | 
						
							| 44 | 43 | ex |  |-  ( ph -> ( i e. X -> ( Y ` i ) e. ( ( C ` i ) [,) ( D ` i ) ) ) ) | 
						
							| 45 | 1 44 | ralrimi |  |-  ( ph -> A. i e. X ( Y ` i ) e. ( ( C ` i ) [,) ( D ` i ) ) ) | 
						
							| 46 | 10 12 45 | 3jca |  |-  ( ph -> ( Y e. _V /\ Y Fn X /\ A. i e. X ( Y ` i ) e. ( ( C ` i ) [,) ( D ` i ) ) ) ) | 
						
							| 47 |  | elixp2 |  |-  ( Y e. X_ i e. X ( ( C ` i ) [,) ( D ` i ) ) <-> ( Y e. _V /\ Y Fn X /\ A. i e. X ( Y ` i ) e. ( ( C ` i ) [,) ( D ` i ) ) ) ) | 
						
							| 48 | 46 47 | sylibr |  |-  ( ph -> Y e. X_ i e. X ( ( C ` i ) [,) ( D ` i ) ) ) |