Step |
Hyp |
Ref |
Expression |
1 |
|
hoiqssbllem1.i |
|- F/ i ph |
2 |
|
hoiqssbllem1.x |
|- ( ph -> X e. Fin ) |
3 |
|
hoiqssbllem1.n |
|- ( ph -> X =/= (/) ) |
4 |
|
hoiqssbllem1.y |
|- ( ph -> Y e. ( RR ^m X ) ) |
5 |
|
hoiqssbllem1.c |
|- ( ph -> C : X --> RR ) |
6 |
|
hoiqssbllem1.d |
|- ( ph -> D : X --> RR ) |
7 |
|
hoiqssbllem1.e |
|- ( ph -> E e. RR+ ) |
8 |
|
hoiqssbllem1.l |
|- ( ( ph /\ i e. X ) -> ( C ` i ) e. ( ( ( Y ` i ) - ( E / ( 2 x. ( sqrt ` ( # ` X ) ) ) ) ) (,) ( Y ` i ) ) ) |
9 |
|
hoiqssbllem1.r |
|- ( ( ph /\ i e. X ) -> ( D ` i ) e. ( ( Y ` i ) (,) ( ( Y ` i ) + ( E / ( 2 x. ( sqrt ` ( # ` X ) ) ) ) ) ) ) |
10 |
4
|
elexd |
|- ( ph -> Y e. _V ) |
11 |
|
elmapfn |
|- ( Y e. ( RR ^m X ) -> Y Fn X ) |
12 |
4 11
|
syl |
|- ( ph -> Y Fn X ) |
13 |
5
|
ffvelrnda |
|- ( ( ph /\ i e. X ) -> ( C ` i ) e. RR ) |
14 |
13
|
rexrd |
|- ( ( ph /\ i e. X ) -> ( C ` i ) e. RR* ) |
15 |
6
|
ffvelrnda |
|- ( ( ph /\ i e. X ) -> ( D ` i ) e. RR ) |
16 |
15
|
rexrd |
|- ( ( ph /\ i e. X ) -> ( D ` i ) e. RR* ) |
17 |
|
elmapi |
|- ( Y e. ( RR ^m X ) -> Y : X --> RR ) |
18 |
4 17
|
syl |
|- ( ph -> Y : X --> RR ) |
19 |
18
|
ffvelrnda |
|- ( ( ph /\ i e. X ) -> ( Y ` i ) e. RR ) |
20 |
19
|
rexrd |
|- ( ( ph /\ i e. X ) -> ( Y ` i ) e. RR* ) |
21 |
|
2rp |
|- 2 e. RR+ |
22 |
21
|
a1i |
|- ( ph -> 2 e. RR+ ) |
23 |
|
hashnncl |
|- ( X e. Fin -> ( ( # ` X ) e. NN <-> X =/= (/) ) ) |
24 |
2 23
|
syl |
|- ( ph -> ( ( # ` X ) e. NN <-> X =/= (/) ) ) |
25 |
3 24
|
mpbird |
|- ( ph -> ( # ` X ) e. NN ) |
26 |
25
|
nnred |
|- ( ph -> ( # ` X ) e. RR ) |
27 |
25
|
nngt0d |
|- ( ph -> 0 < ( # ` X ) ) |
28 |
26 27
|
elrpd |
|- ( ph -> ( # ` X ) e. RR+ ) |
29 |
28
|
rpsqrtcld |
|- ( ph -> ( sqrt ` ( # ` X ) ) e. RR+ ) |
30 |
22 29
|
rpmulcld |
|- ( ph -> ( 2 x. ( sqrt ` ( # ` X ) ) ) e. RR+ ) |
31 |
7 30
|
rpdivcld |
|- ( ph -> ( E / ( 2 x. ( sqrt ` ( # ` X ) ) ) ) e. RR+ ) |
32 |
31
|
rpred |
|- ( ph -> ( E / ( 2 x. ( sqrt ` ( # ` X ) ) ) ) e. RR ) |
33 |
32
|
adantr |
|- ( ( ph /\ i e. X ) -> ( E / ( 2 x. ( sqrt ` ( # ` X ) ) ) ) e. RR ) |
34 |
19 33
|
resubcld |
|- ( ( ph /\ i e. X ) -> ( ( Y ` i ) - ( E / ( 2 x. ( sqrt ` ( # ` X ) ) ) ) ) e. RR ) |
35 |
34
|
rexrd |
|- ( ( ph /\ i e. X ) -> ( ( Y ` i ) - ( E / ( 2 x. ( sqrt ` ( # ` X ) ) ) ) ) e. RR* ) |
36 |
|
iooltub |
|- ( ( ( ( Y ` i ) - ( E / ( 2 x. ( sqrt ` ( # ` X ) ) ) ) ) e. RR* /\ ( Y ` i ) e. RR* /\ ( C ` i ) e. ( ( ( Y ` i ) - ( E / ( 2 x. ( sqrt ` ( # ` X ) ) ) ) ) (,) ( Y ` i ) ) ) -> ( C ` i ) < ( Y ` i ) ) |
37 |
35 20 8 36
|
syl3anc |
|- ( ( ph /\ i e. X ) -> ( C ` i ) < ( Y ` i ) ) |
38 |
13 19 37
|
ltled |
|- ( ( ph /\ i e. X ) -> ( C ` i ) <_ ( Y ` i ) ) |
39 |
19 33
|
readdcld |
|- ( ( ph /\ i e. X ) -> ( ( Y ` i ) + ( E / ( 2 x. ( sqrt ` ( # ` X ) ) ) ) ) e. RR ) |
40 |
39
|
rexrd |
|- ( ( ph /\ i e. X ) -> ( ( Y ` i ) + ( E / ( 2 x. ( sqrt ` ( # ` X ) ) ) ) ) e. RR* ) |
41 |
|
ioogtlb |
|- ( ( ( Y ` i ) e. RR* /\ ( ( Y ` i ) + ( E / ( 2 x. ( sqrt ` ( # ` X ) ) ) ) ) e. RR* /\ ( D ` i ) e. ( ( Y ` i ) (,) ( ( Y ` i ) + ( E / ( 2 x. ( sqrt ` ( # ` X ) ) ) ) ) ) ) -> ( Y ` i ) < ( D ` i ) ) |
42 |
20 40 9 41
|
syl3anc |
|- ( ( ph /\ i e. X ) -> ( Y ` i ) < ( D ` i ) ) |
43 |
14 16 20 38 42
|
elicod |
|- ( ( ph /\ i e. X ) -> ( Y ` i ) e. ( ( C ` i ) [,) ( D ` i ) ) ) |
44 |
43
|
ex |
|- ( ph -> ( i e. X -> ( Y ` i ) e. ( ( C ` i ) [,) ( D ` i ) ) ) ) |
45 |
1 44
|
ralrimi |
|- ( ph -> A. i e. X ( Y ` i ) e. ( ( C ` i ) [,) ( D ` i ) ) ) |
46 |
10 12 45
|
3jca |
|- ( ph -> ( Y e. _V /\ Y Fn X /\ A. i e. X ( Y ` i ) e. ( ( C ` i ) [,) ( D ` i ) ) ) ) |
47 |
|
elixp2 |
|- ( Y e. X_ i e. X ( ( C ` i ) [,) ( D ` i ) ) <-> ( Y e. _V /\ Y Fn X /\ A. i e. X ( Y ` i ) e. ( ( C ` i ) [,) ( D ` i ) ) ) ) |
48 |
46 47
|
sylibr |
|- ( ph -> Y e. X_ i e. X ( ( C ` i ) [,) ( D ` i ) ) ) |