Step |
Hyp |
Ref |
Expression |
1 |
|
hoiqssbllem1.i |
⊢ Ⅎ 𝑖 𝜑 |
2 |
|
hoiqssbllem1.x |
⊢ ( 𝜑 → 𝑋 ∈ Fin ) |
3 |
|
hoiqssbllem1.n |
⊢ ( 𝜑 → 𝑋 ≠ ∅ ) |
4 |
|
hoiqssbllem1.y |
⊢ ( 𝜑 → 𝑌 ∈ ( ℝ ↑m 𝑋 ) ) |
5 |
|
hoiqssbllem1.c |
⊢ ( 𝜑 → 𝐶 : 𝑋 ⟶ ℝ ) |
6 |
|
hoiqssbllem1.d |
⊢ ( 𝜑 → 𝐷 : 𝑋 ⟶ ℝ ) |
7 |
|
hoiqssbllem1.e |
⊢ ( 𝜑 → 𝐸 ∈ ℝ+ ) |
8 |
|
hoiqssbllem1.l |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑋 ) → ( 𝐶 ‘ 𝑖 ) ∈ ( ( ( 𝑌 ‘ 𝑖 ) − ( 𝐸 / ( 2 · ( √ ‘ ( ♯ ‘ 𝑋 ) ) ) ) ) (,) ( 𝑌 ‘ 𝑖 ) ) ) |
9 |
|
hoiqssbllem1.r |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑋 ) → ( 𝐷 ‘ 𝑖 ) ∈ ( ( 𝑌 ‘ 𝑖 ) (,) ( ( 𝑌 ‘ 𝑖 ) + ( 𝐸 / ( 2 · ( √ ‘ ( ♯ ‘ 𝑋 ) ) ) ) ) ) ) |
10 |
4
|
elexd |
⊢ ( 𝜑 → 𝑌 ∈ V ) |
11 |
|
elmapfn |
⊢ ( 𝑌 ∈ ( ℝ ↑m 𝑋 ) → 𝑌 Fn 𝑋 ) |
12 |
4 11
|
syl |
⊢ ( 𝜑 → 𝑌 Fn 𝑋 ) |
13 |
5
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑋 ) → ( 𝐶 ‘ 𝑖 ) ∈ ℝ ) |
14 |
13
|
rexrd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑋 ) → ( 𝐶 ‘ 𝑖 ) ∈ ℝ* ) |
15 |
6
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑋 ) → ( 𝐷 ‘ 𝑖 ) ∈ ℝ ) |
16 |
15
|
rexrd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑋 ) → ( 𝐷 ‘ 𝑖 ) ∈ ℝ* ) |
17 |
|
elmapi |
⊢ ( 𝑌 ∈ ( ℝ ↑m 𝑋 ) → 𝑌 : 𝑋 ⟶ ℝ ) |
18 |
4 17
|
syl |
⊢ ( 𝜑 → 𝑌 : 𝑋 ⟶ ℝ ) |
19 |
18
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑋 ) → ( 𝑌 ‘ 𝑖 ) ∈ ℝ ) |
20 |
19
|
rexrd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑋 ) → ( 𝑌 ‘ 𝑖 ) ∈ ℝ* ) |
21 |
|
2rp |
⊢ 2 ∈ ℝ+ |
22 |
21
|
a1i |
⊢ ( 𝜑 → 2 ∈ ℝ+ ) |
23 |
|
hashnncl |
⊢ ( 𝑋 ∈ Fin → ( ( ♯ ‘ 𝑋 ) ∈ ℕ ↔ 𝑋 ≠ ∅ ) ) |
24 |
2 23
|
syl |
⊢ ( 𝜑 → ( ( ♯ ‘ 𝑋 ) ∈ ℕ ↔ 𝑋 ≠ ∅ ) ) |
25 |
3 24
|
mpbird |
⊢ ( 𝜑 → ( ♯ ‘ 𝑋 ) ∈ ℕ ) |
26 |
25
|
nnred |
⊢ ( 𝜑 → ( ♯ ‘ 𝑋 ) ∈ ℝ ) |
27 |
25
|
nngt0d |
⊢ ( 𝜑 → 0 < ( ♯ ‘ 𝑋 ) ) |
28 |
26 27
|
elrpd |
⊢ ( 𝜑 → ( ♯ ‘ 𝑋 ) ∈ ℝ+ ) |
29 |
28
|
rpsqrtcld |
⊢ ( 𝜑 → ( √ ‘ ( ♯ ‘ 𝑋 ) ) ∈ ℝ+ ) |
30 |
22 29
|
rpmulcld |
⊢ ( 𝜑 → ( 2 · ( √ ‘ ( ♯ ‘ 𝑋 ) ) ) ∈ ℝ+ ) |
31 |
7 30
|
rpdivcld |
⊢ ( 𝜑 → ( 𝐸 / ( 2 · ( √ ‘ ( ♯ ‘ 𝑋 ) ) ) ) ∈ ℝ+ ) |
32 |
31
|
rpred |
⊢ ( 𝜑 → ( 𝐸 / ( 2 · ( √ ‘ ( ♯ ‘ 𝑋 ) ) ) ) ∈ ℝ ) |
33 |
32
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑋 ) → ( 𝐸 / ( 2 · ( √ ‘ ( ♯ ‘ 𝑋 ) ) ) ) ∈ ℝ ) |
34 |
19 33
|
resubcld |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑋 ) → ( ( 𝑌 ‘ 𝑖 ) − ( 𝐸 / ( 2 · ( √ ‘ ( ♯ ‘ 𝑋 ) ) ) ) ) ∈ ℝ ) |
35 |
34
|
rexrd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑋 ) → ( ( 𝑌 ‘ 𝑖 ) − ( 𝐸 / ( 2 · ( √ ‘ ( ♯ ‘ 𝑋 ) ) ) ) ) ∈ ℝ* ) |
36 |
|
iooltub |
⊢ ( ( ( ( 𝑌 ‘ 𝑖 ) − ( 𝐸 / ( 2 · ( √ ‘ ( ♯ ‘ 𝑋 ) ) ) ) ) ∈ ℝ* ∧ ( 𝑌 ‘ 𝑖 ) ∈ ℝ* ∧ ( 𝐶 ‘ 𝑖 ) ∈ ( ( ( 𝑌 ‘ 𝑖 ) − ( 𝐸 / ( 2 · ( √ ‘ ( ♯ ‘ 𝑋 ) ) ) ) ) (,) ( 𝑌 ‘ 𝑖 ) ) ) → ( 𝐶 ‘ 𝑖 ) < ( 𝑌 ‘ 𝑖 ) ) |
37 |
35 20 8 36
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑋 ) → ( 𝐶 ‘ 𝑖 ) < ( 𝑌 ‘ 𝑖 ) ) |
38 |
13 19 37
|
ltled |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑋 ) → ( 𝐶 ‘ 𝑖 ) ≤ ( 𝑌 ‘ 𝑖 ) ) |
39 |
19 33
|
readdcld |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑋 ) → ( ( 𝑌 ‘ 𝑖 ) + ( 𝐸 / ( 2 · ( √ ‘ ( ♯ ‘ 𝑋 ) ) ) ) ) ∈ ℝ ) |
40 |
39
|
rexrd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑋 ) → ( ( 𝑌 ‘ 𝑖 ) + ( 𝐸 / ( 2 · ( √ ‘ ( ♯ ‘ 𝑋 ) ) ) ) ) ∈ ℝ* ) |
41 |
|
ioogtlb |
⊢ ( ( ( 𝑌 ‘ 𝑖 ) ∈ ℝ* ∧ ( ( 𝑌 ‘ 𝑖 ) + ( 𝐸 / ( 2 · ( √ ‘ ( ♯ ‘ 𝑋 ) ) ) ) ) ∈ ℝ* ∧ ( 𝐷 ‘ 𝑖 ) ∈ ( ( 𝑌 ‘ 𝑖 ) (,) ( ( 𝑌 ‘ 𝑖 ) + ( 𝐸 / ( 2 · ( √ ‘ ( ♯ ‘ 𝑋 ) ) ) ) ) ) ) → ( 𝑌 ‘ 𝑖 ) < ( 𝐷 ‘ 𝑖 ) ) |
42 |
20 40 9 41
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑋 ) → ( 𝑌 ‘ 𝑖 ) < ( 𝐷 ‘ 𝑖 ) ) |
43 |
14 16 20 38 42
|
elicod |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑋 ) → ( 𝑌 ‘ 𝑖 ) ∈ ( ( 𝐶 ‘ 𝑖 ) [,) ( 𝐷 ‘ 𝑖 ) ) ) |
44 |
43
|
ex |
⊢ ( 𝜑 → ( 𝑖 ∈ 𝑋 → ( 𝑌 ‘ 𝑖 ) ∈ ( ( 𝐶 ‘ 𝑖 ) [,) ( 𝐷 ‘ 𝑖 ) ) ) ) |
45 |
1 44
|
ralrimi |
⊢ ( 𝜑 → ∀ 𝑖 ∈ 𝑋 ( 𝑌 ‘ 𝑖 ) ∈ ( ( 𝐶 ‘ 𝑖 ) [,) ( 𝐷 ‘ 𝑖 ) ) ) |
46 |
10 12 45
|
3jca |
⊢ ( 𝜑 → ( 𝑌 ∈ V ∧ 𝑌 Fn 𝑋 ∧ ∀ 𝑖 ∈ 𝑋 ( 𝑌 ‘ 𝑖 ) ∈ ( ( 𝐶 ‘ 𝑖 ) [,) ( 𝐷 ‘ 𝑖 ) ) ) ) |
47 |
|
elixp2 |
⊢ ( 𝑌 ∈ X 𝑖 ∈ 𝑋 ( ( 𝐶 ‘ 𝑖 ) [,) ( 𝐷 ‘ 𝑖 ) ) ↔ ( 𝑌 ∈ V ∧ 𝑌 Fn 𝑋 ∧ ∀ 𝑖 ∈ 𝑋 ( 𝑌 ‘ 𝑖 ) ∈ ( ( 𝐶 ‘ 𝑖 ) [,) ( 𝐷 ‘ 𝑖 ) ) ) ) |
48 |
46 47
|
sylibr |
⊢ ( 𝜑 → 𝑌 ∈ X 𝑖 ∈ 𝑋 ( ( 𝐶 ‘ 𝑖 ) [,) ( 𝐷 ‘ 𝑖 ) ) ) |