| Step | Hyp | Ref | Expression | 
						
							| 1 |  | hoiqssbllem1.i | ⊢ Ⅎ 𝑖 𝜑 | 
						
							| 2 |  | hoiqssbllem1.x | ⊢ ( 𝜑  →  𝑋  ∈  Fin ) | 
						
							| 3 |  | hoiqssbllem1.n | ⊢ ( 𝜑  →  𝑋  ≠  ∅ ) | 
						
							| 4 |  | hoiqssbllem1.y | ⊢ ( 𝜑  →  𝑌  ∈  ( ℝ  ↑m  𝑋 ) ) | 
						
							| 5 |  | hoiqssbllem1.c | ⊢ ( 𝜑  →  𝐶 : 𝑋 ⟶ ℝ ) | 
						
							| 6 |  | hoiqssbllem1.d | ⊢ ( 𝜑  →  𝐷 : 𝑋 ⟶ ℝ ) | 
						
							| 7 |  | hoiqssbllem1.e | ⊢ ( 𝜑  →  𝐸  ∈  ℝ+ ) | 
						
							| 8 |  | hoiqssbllem1.l | ⊢ ( ( 𝜑  ∧  𝑖  ∈  𝑋 )  →  ( 𝐶 ‘ 𝑖 )  ∈  ( ( ( 𝑌 ‘ 𝑖 )  −  ( 𝐸  /  ( 2  ·  ( √ ‘ ( ♯ ‘ 𝑋 ) ) ) ) ) (,) ( 𝑌 ‘ 𝑖 ) ) ) | 
						
							| 9 |  | hoiqssbllem1.r | ⊢ ( ( 𝜑  ∧  𝑖  ∈  𝑋 )  →  ( 𝐷 ‘ 𝑖 )  ∈  ( ( 𝑌 ‘ 𝑖 ) (,) ( ( 𝑌 ‘ 𝑖 )  +  ( 𝐸  /  ( 2  ·  ( √ ‘ ( ♯ ‘ 𝑋 ) ) ) ) ) ) ) | 
						
							| 10 | 4 | elexd | ⊢ ( 𝜑  →  𝑌  ∈  V ) | 
						
							| 11 |  | elmapfn | ⊢ ( 𝑌  ∈  ( ℝ  ↑m  𝑋 )  →  𝑌  Fn  𝑋 ) | 
						
							| 12 | 4 11 | syl | ⊢ ( 𝜑  →  𝑌  Fn  𝑋 ) | 
						
							| 13 | 5 | ffvelcdmda | ⊢ ( ( 𝜑  ∧  𝑖  ∈  𝑋 )  →  ( 𝐶 ‘ 𝑖 )  ∈  ℝ ) | 
						
							| 14 | 13 | rexrd | ⊢ ( ( 𝜑  ∧  𝑖  ∈  𝑋 )  →  ( 𝐶 ‘ 𝑖 )  ∈  ℝ* ) | 
						
							| 15 | 6 | ffvelcdmda | ⊢ ( ( 𝜑  ∧  𝑖  ∈  𝑋 )  →  ( 𝐷 ‘ 𝑖 )  ∈  ℝ ) | 
						
							| 16 | 15 | rexrd | ⊢ ( ( 𝜑  ∧  𝑖  ∈  𝑋 )  →  ( 𝐷 ‘ 𝑖 )  ∈  ℝ* ) | 
						
							| 17 |  | elmapi | ⊢ ( 𝑌  ∈  ( ℝ  ↑m  𝑋 )  →  𝑌 : 𝑋 ⟶ ℝ ) | 
						
							| 18 | 4 17 | syl | ⊢ ( 𝜑  →  𝑌 : 𝑋 ⟶ ℝ ) | 
						
							| 19 | 18 | ffvelcdmda | ⊢ ( ( 𝜑  ∧  𝑖  ∈  𝑋 )  →  ( 𝑌 ‘ 𝑖 )  ∈  ℝ ) | 
						
							| 20 | 19 | rexrd | ⊢ ( ( 𝜑  ∧  𝑖  ∈  𝑋 )  →  ( 𝑌 ‘ 𝑖 )  ∈  ℝ* ) | 
						
							| 21 |  | 2rp | ⊢ 2  ∈  ℝ+ | 
						
							| 22 | 21 | a1i | ⊢ ( 𝜑  →  2  ∈  ℝ+ ) | 
						
							| 23 |  | hashnncl | ⊢ ( 𝑋  ∈  Fin  →  ( ( ♯ ‘ 𝑋 )  ∈  ℕ  ↔  𝑋  ≠  ∅ ) ) | 
						
							| 24 | 2 23 | syl | ⊢ ( 𝜑  →  ( ( ♯ ‘ 𝑋 )  ∈  ℕ  ↔  𝑋  ≠  ∅ ) ) | 
						
							| 25 | 3 24 | mpbird | ⊢ ( 𝜑  →  ( ♯ ‘ 𝑋 )  ∈  ℕ ) | 
						
							| 26 | 25 | nnred | ⊢ ( 𝜑  →  ( ♯ ‘ 𝑋 )  ∈  ℝ ) | 
						
							| 27 | 25 | nngt0d | ⊢ ( 𝜑  →  0  <  ( ♯ ‘ 𝑋 ) ) | 
						
							| 28 | 26 27 | elrpd | ⊢ ( 𝜑  →  ( ♯ ‘ 𝑋 )  ∈  ℝ+ ) | 
						
							| 29 | 28 | rpsqrtcld | ⊢ ( 𝜑  →  ( √ ‘ ( ♯ ‘ 𝑋 ) )  ∈  ℝ+ ) | 
						
							| 30 | 22 29 | rpmulcld | ⊢ ( 𝜑  →  ( 2  ·  ( √ ‘ ( ♯ ‘ 𝑋 ) ) )  ∈  ℝ+ ) | 
						
							| 31 | 7 30 | rpdivcld | ⊢ ( 𝜑  →  ( 𝐸  /  ( 2  ·  ( √ ‘ ( ♯ ‘ 𝑋 ) ) ) )  ∈  ℝ+ ) | 
						
							| 32 | 31 | rpred | ⊢ ( 𝜑  →  ( 𝐸  /  ( 2  ·  ( √ ‘ ( ♯ ‘ 𝑋 ) ) ) )  ∈  ℝ ) | 
						
							| 33 | 32 | adantr | ⊢ ( ( 𝜑  ∧  𝑖  ∈  𝑋 )  →  ( 𝐸  /  ( 2  ·  ( √ ‘ ( ♯ ‘ 𝑋 ) ) ) )  ∈  ℝ ) | 
						
							| 34 | 19 33 | resubcld | ⊢ ( ( 𝜑  ∧  𝑖  ∈  𝑋 )  →  ( ( 𝑌 ‘ 𝑖 )  −  ( 𝐸  /  ( 2  ·  ( √ ‘ ( ♯ ‘ 𝑋 ) ) ) ) )  ∈  ℝ ) | 
						
							| 35 | 34 | rexrd | ⊢ ( ( 𝜑  ∧  𝑖  ∈  𝑋 )  →  ( ( 𝑌 ‘ 𝑖 )  −  ( 𝐸  /  ( 2  ·  ( √ ‘ ( ♯ ‘ 𝑋 ) ) ) ) )  ∈  ℝ* ) | 
						
							| 36 |  | iooltub | ⊢ ( ( ( ( 𝑌 ‘ 𝑖 )  −  ( 𝐸  /  ( 2  ·  ( √ ‘ ( ♯ ‘ 𝑋 ) ) ) ) )  ∈  ℝ*  ∧  ( 𝑌 ‘ 𝑖 )  ∈  ℝ*  ∧  ( 𝐶 ‘ 𝑖 )  ∈  ( ( ( 𝑌 ‘ 𝑖 )  −  ( 𝐸  /  ( 2  ·  ( √ ‘ ( ♯ ‘ 𝑋 ) ) ) ) ) (,) ( 𝑌 ‘ 𝑖 ) ) )  →  ( 𝐶 ‘ 𝑖 )  <  ( 𝑌 ‘ 𝑖 ) ) | 
						
							| 37 | 35 20 8 36 | syl3anc | ⊢ ( ( 𝜑  ∧  𝑖  ∈  𝑋 )  →  ( 𝐶 ‘ 𝑖 )  <  ( 𝑌 ‘ 𝑖 ) ) | 
						
							| 38 | 13 19 37 | ltled | ⊢ ( ( 𝜑  ∧  𝑖  ∈  𝑋 )  →  ( 𝐶 ‘ 𝑖 )  ≤  ( 𝑌 ‘ 𝑖 ) ) | 
						
							| 39 | 19 33 | readdcld | ⊢ ( ( 𝜑  ∧  𝑖  ∈  𝑋 )  →  ( ( 𝑌 ‘ 𝑖 )  +  ( 𝐸  /  ( 2  ·  ( √ ‘ ( ♯ ‘ 𝑋 ) ) ) ) )  ∈  ℝ ) | 
						
							| 40 | 39 | rexrd | ⊢ ( ( 𝜑  ∧  𝑖  ∈  𝑋 )  →  ( ( 𝑌 ‘ 𝑖 )  +  ( 𝐸  /  ( 2  ·  ( √ ‘ ( ♯ ‘ 𝑋 ) ) ) ) )  ∈  ℝ* ) | 
						
							| 41 |  | ioogtlb | ⊢ ( ( ( 𝑌 ‘ 𝑖 )  ∈  ℝ*  ∧  ( ( 𝑌 ‘ 𝑖 )  +  ( 𝐸  /  ( 2  ·  ( √ ‘ ( ♯ ‘ 𝑋 ) ) ) ) )  ∈  ℝ*  ∧  ( 𝐷 ‘ 𝑖 )  ∈  ( ( 𝑌 ‘ 𝑖 ) (,) ( ( 𝑌 ‘ 𝑖 )  +  ( 𝐸  /  ( 2  ·  ( √ ‘ ( ♯ ‘ 𝑋 ) ) ) ) ) ) )  →  ( 𝑌 ‘ 𝑖 )  <  ( 𝐷 ‘ 𝑖 ) ) | 
						
							| 42 | 20 40 9 41 | syl3anc | ⊢ ( ( 𝜑  ∧  𝑖  ∈  𝑋 )  →  ( 𝑌 ‘ 𝑖 )  <  ( 𝐷 ‘ 𝑖 ) ) | 
						
							| 43 | 14 16 20 38 42 | elicod | ⊢ ( ( 𝜑  ∧  𝑖  ∈  𝑋 )  →  ( 𝑌 ‘ 𝑖 )  ∈  ( ( 𝐶 ‘ 𝑖 ) [,) ( 𝐷 ‘ 𝑖 ) ) ) | 
						
							| 44 | 43 | ex | ⊢ ( 𝜑  →  ( 𝑖  ∈  𝑋  →  ( 𝑌 ‘ 𝑖 )  ∈  ( ( 𝐶 ‘ 𝑖 ) [,) ( 𝐷 ‘ 𝑖 ) ) ) ) | 
						
							| 45 | 1 44 | ralrimi | ⊢ ( 𝜑  →  ∀ 𝑖  ∈  𝑋 ( 𝑌 ‘ 𝑖 )  ∈  ( ( 𝐶 ‘ 𝑖 ) [,) ( 𝐷 ‘ 𝑖 ) ) ) | 
						
							| 46 | 10 12 45 | 3jca | ⊢ ( 𝜑  →  ( 𝑌  ∈  V  ∧  𝑌  Fn  𝑋  ∧  ∀ 𝑖  ∈  𝑋 ( 𝑌 ‘ 𝑖 )  ∈  ( ( 𝐶 ‘ 𝑖 ) [,) ( 𝐷 ‘ 𝑖 ) ) ) ) | 
						
							| 47 |  | elixp2 | ⊢ ( 𝑌  ∈  X 𝑖  ∈  𝑋 ( ( 𝐶 ‘ 𝑖 ) [,) ( 𝐷 ‘ 𝑖 ) )  ↔  ( 𝑌  ∈  V  ∧  𝑌  Fn  𝑋  ∧  ∀ 𝑖  ∈  𝑋 ( 𝑌 ‘ 𝑖 )  ∈  ( ( 𝐶 ‘ 𝑖 ) [,) ( 𝐷 ‘ 𝑖 ) ) ) ) | 
						
							| 48 | 46 47 | sylibr | ⊢ ( 𝜑  →  𝑌  ∈  X 𝑖  ∈  𝑋 ( ( 𝐶 ‘ 𝑖 ) [,) ( 𝐷 ‘ 𝑖 ) ) ) |