Step |
Hyp |
Ref |
Expression |
1 |
|
hoiqssbllem2.i |
⊢ Ⅎ 𝑖 𝜑 |
2 |
|
hoiqssbllem2.x |
⊢ ( 𝜑 → 𝑋 ∈ Fin ) |
3 |
|
hoiqssbllem2.n |
⊢ ( 𝜑 → 𝑋 ≠ ∅ ) |
4 |
|
hoiqssbllem2.y |
⊢ ( 𝜑 → 𝑌 ∈ ( ℝ ↑m 𝑋 ) ) |
5 |
|
hoiqssbllem2.c |
⊢ ( 𝜑 → 𝐶 : 𝑋 ⟶ ℝ ) |
6 |
|
hoiqssbllem2.d |
⊢ ( 𝜑 → 𝐷 : 𝑋 ⟶ ℝ ) |
7 |
|
hoiqssbllem2.e |
⊢ ( 𝜑 → 𝐸 ∈ ℝ+ ) |
8 |
|
hoiqssbllem2.l |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑋 ) → ( 𝐶 ‘ 𝑖 ) ∈ ( ( ( 𝑌 ‘ 𝑖 ) − ( 𝐸 / ( 2 · ( √ ‘ ( ♯ ‘ 𝑋 ) ) ) ) ) (,) ( 𝑌 ‘ 𝑖 ) ) ) |
9 |
|
hoiqssbllem2.r |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑋 ) → ( 𝐷 ‘ 𝑖 ) ∈ ( ( 𝑌 ‘ 𝑖 ) (,) ( ( 𝑌 ‘ 𝑖 ) + ( 𝐸 / ( 2 · ( √ ‘ ( ♯ ‘ 𝑋 ) ) ) ) ) ) ) |
10 |
|
eqid |
⊢ ( ℝ^ ‘ 𝑋 ) = ( ℝ^ ‘ 𝑋 ) |
11 |
|
eqid |
⊢ ( ℝ ↑m 𝑋 ) = ( ℝ ↑m 𝑋 ) |
12 |
10 11
|
rrxdsfi |
⊢ ( 𝑋 ∈ Fin → ( dist ‘ ( ℝ^ ‘ 𝑋 ) ) = ( 𝑔 ∈ ( ℝ ↑m 𝑋 ) , ℎ ∈ ( ℝ ↑m 𝑋 ) ↦ ( √ ‘ Σ 𝑖 ∈ 𝑋 ( ( ( 𝑔 ‘ 𝑖 ) − ( ℎ ‘ 𝑖 ) ) ↑ 2 ) ) ) ) |
13 |
2 12
|
syl |
⊢ ( 𝜑 → ( dist ‘ ( ℝ^ ‘ 𝑋 ) ) = ( 𝑔 ∈ ( ℝ ↑m 𝑋 ) , ℎ ∈ ( ℝ ↑m 𝑋 ) ↦ ( √ ‘ Σ 𝑖 ∈ 𝑋 ( ( ( 𝑔 ‘ 𝑖 ) − ( ℎ ‘ 𝑖 ) ) ↑ 2 ) ) ) ) |
14 |
13
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ X 𝑖 ∈ 𝑋 ( ( 𝐶 ‘ 𝑖 ) [,) ( 𝐷 ‘ 𝑖 ) ) ) → ( dist ‘ ( ℝ^ ‘ 𝑋 ) ) = ( 𝑔 ∈ ( ℝ ↑m 𝑋 ) , ℎ ∈ ( ℝ ↑m 𝑋 ) ↦ ( √ ‘ Σ 𝑖 ∈ 𝑋 ( ( ( 𝑔 ‘ 𝑖 ) − ( ℎ ‘ 𝑖 ) ) ↑ 2 ) ) ) ) |
15 |
|
fveq1 |
⊢ ( 𝑔 = 𝑌 → ( 𝑔 ‘ 𝑖 ) = ( 𝑌 ‘ 𝑖 ) ) |
16 |
15
|
adantr |
⊢ ( ( 𝑔 = 𝑌 ∧ ℎ = 𝑓 ) → ( 𝑔 ‘ 𝑖 ) = ( 𝑌 ‘ 𝑖 ) ) |
17 |
|
fveq1 |
⊢ ( ℎ = 𝑓 → ( ℎ ‘ 𝑖 ) = ( 𝑓 ‘ 𝑖 ) ) |
18 |
17
|
adantl |
⊢ ( ( 𝑔 = 𝑌 ∧ ℎ = 𝑓 ) → ( ℎ ‘ 𝑖 ) = ( 𝑓 ‘ 𝑖 ) ) |
19 |
16 18
|
oveq12d |
⊢ ( ( 𝑔 = 𝑌 ∧ ℎ = 𝑓 ) → ( ( 𝑔 ‘ 𝑖 ) − ( ℎ ‘ 𝑖 ) ) = ( ( 𝑌 ‘ 𝑖 ) − ( 𝑓 ‘ 𝑖 ) ) ) |
20 |
19
|
oveq1d |
⊢ ( ( 𝑔 = 𝑌 ∧ ℎ = 𝑓 ) → ( ( ( 𝑔 ‘ 𝑖 ) − ( ℎ ‘ 𝑖 ) ) ↑ 2 ) = ( ( ( 𝑌 ‘ 𝑖 ) − ( 𝑓 ‘ 𝑖 ) ) ↑ 2 ) ) |
21 |
20
|
sumeq2sdv |
⊢ ( ( 𝑔 = 𝑌 ∧ ℎ = 𝑓 ) → Σ 𝑖 ∈ 𝑋 ( ( ( 𝑔 ‘ 𝑖 ) − ( ℎ ‘ 𝑖 ) ) ↑ 2 ) = Σ 𝑖 ∈ 𝑋 ( ( ( 𝑌 ‘ 𝑖 ) − ( 𝑓 ‘ 𝑖 ) ) ↑ 2 ) ) |
22 |
21
|
fveq2d |
⊢ ( ( 𝑔 = 𝑌 ∧ ℎ = 𝑓 ) → ( √ ‘ Σ 𝑖 ∈ 𝑋 ( ( ( 𝑔 ‘ 𝑖 ) − ( ℎ ‘ 𝑖 ) ) ↑ 2 ) ) = ( √ ‘ Σ 𝑖 ∈ 𝑋 ( ( ( 𝑌 ‘ 𝑖 ) − ( 𝑓 ‘ 𝑖 ) ) ↑ 2 ) ) ) |
23 |
22
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ X 𝑖 ∈ 𝑋 ( ( 𝐶 ‘ 𝑖 ) [,) ( 𝐷 ‘ 𝑖 ) ) ) ∧ ( 𝑔 = 𝑌 ∧ ℎ = 𝑓 ) ) → ( √ ‘ Σ 𝑖 ∈ 𝑋 ( ( ( 𝑔 ‘ 𝑖 ) − ( ℎ ‘ 𝑖 ) ) ↑ 2 ) ) = ( √ ‘ Σ 𝑖 ∈ 𝑋 ( ( ( 𝑌 ‘ 𝑖 ) − ( 𝑓 ‘ 𝑖 ) ) ↑ 2 ) ) ) |
24 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ X 𝑖 ∈ 𝑋 ( ( 𝐶 ‘ 𝑖 ) [,) ( 𝐷 ‘ 𝑖 ) ) ) → 𝑌 ∈ ( ℝ ↑m 𝑋 ) ) |
25 |
5
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑋 ) → ( 𝐶 ‘ 𝑖 ) ∈ ℝ ) |
26 |
6
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑋 ) → ( 𝐷 ‘ 𝑖 ) ∈ ℝ ) |
27 |
26
|
rexrd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑋 ) → ( 𝐷 ‘ 𝑖 ) ∈ ℝ* ) |
28 |
1 25 27
|
hoissrrn2 |
⊢ ( 𝜑 → X 𝑖 ∈ 𝑋 ( ( 𝐶 ‘ 𝑖 ) [,) ( 𝐷 ‘ 𝑖 ) ) ⊆ ( ℝ ↑m 𝑋 ) ) |
29 |
28
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ X 𝑖 ∈ 𝑋 ( ( 𝐶 ‘ 𝑖 ) [,) ( 𝐷 ‘ 𝑖 ) ) ) → X 𝑖 ∈ 𝑋 ( ( 𝐶 ‘ 𝑖 ) [,) ( 𝐷 ‘ 𝑖 ) ) ⊆ ( ℝ ↑m 𝑋 ) ) |
30 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ X 𝑖 ∈ 𝑋 ( ( 𝐶 ‘ 𝑖 ) [,) ( 𝐷 ‘ 𝑖 ) ) ) → 𝑓 ∈ X 𝑖 ∈ 𝑋 ( ( 𝐶 ‘ 𝑖 ) [,) ( 𝐷 ‘ 𝑖 ) ) ) |
31 |
29 30
|
sseldd |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ X 𝑖 ∈ 𝑋 ( ( 𝐶 ‘ 𝑖 ) [,) ( 𝐷 ‘ 𝑖 ) ) ) → 𝑓 ∈ ( ℝ ↑m 𝑋 ) ) |
32 |
|
fvexd |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ X 𝑖 ∈ 𝑋 ( ( 𝐶 ‘ 𝑖 ) [,) ( 𝐷 ‘ 𝑖 ) ) ) → ( √ ‘ Σ 𝑖 ∈ 𝑋 ( ( ( 𝑌 ‘ 𝑖 ) − ( 𝑓 ‘ 𝑖 ) ) ↑ 2 ) ) ∈ V ) |
33 |
14 23 24 31 32
|
ovmpod |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ X 𝑖 ∈ 𝑋 ( ( 𝐶 ‘ 𝑖 ) [,) ( 𝐷 ‘ 𝑖 ) ) ) → ( 𝑌 ( dist ‘ ( ℝ^ ‘ 𝑋 ) ) 𝑓 ) = ( √ ‘ Σ 𝑖 ∈ 𝑋 ( ( ( 𝑌 ‘ 𝑖 ) − ( 𝑓 ‘ 𝑖 ) ) ↑ 2 ) ) ) |
34 |
|
nfcv |
⊢ Ⅎ 𝑖 𝑓 |
35 |
|
nfixp1 |
⊢ Ⅎ 𝑖 X 𝑖 ∈ 𝑋 ( ( 𝐶 ‘ 𝑖 ) [,) ( 𝐷 ‘ 𝑖 ) ) |
36 |
34 35
|
nfel |
⊢ Ⅎ 𝑖 𝑓 ∈ X 𝑖 ∈ 𝑋 ( ( 𝐶 ‘ 𝑖 ) [,) ( 𝐷 ‘ 𝑖 ) ) |
37 |
1 36
|
nfan |
⊢ Ⅎ 𝑖 ( 𝜑 ∧ 𝑓 ∈ X 𝑖 ∈ 𝑋 ( ( 𝐶 ‘ 𝑖 ) [,) ( 𝐷 ‘ 𝑖 ) ) ) |
38 |
|
simpl |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ X 𝑖 ∈ 𝑋 ( ( 𝐶 ‘ 𝑖 ) [,) ( 𝐷 ‘ 𝑖 ) ) ) → 𝜑 ) |
39 |
38 2
|
syl |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ X 𝑖 ∈ 𝑋 ( ( 𝐶 ‘ 𝑖 ) [,) ( 𝐷 ‘ 𝑖 ) ) ) → 𝑋 ∈ Fin ) |
40 |
|
elmapi |
⊢ ( 𝑌 ∈ ( ℝ ↑m 𝑋 ) → 𝑌 : 𝑋 ⟶ ℝ ) |
41 |
4 40
|
syl |
⊢ ( 𝜑 → 𝑌 : 𝑋 ⟶ ℝ ) |
42 |
41
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑋 ) → ( 𝑌 ‘ 𝑖 ) ∈ ℝ ) |
43 |
38 42
|
sylan |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ X 𝑖 ∈ 𝑋 ( ( 𝐶 ‘ 𝑖 ) [,) ( 𝐷 ‘ 𝑖 ) ) ) ∧ 𝑖 ∈ 𝑋 ) → ( 𝑌 ‘ 𝑖 ) ∈ ℝ ) |
44 |
|
icossre |
⊢ ( ( ( 𝐶 ‘ 𝑖 ) ∈ ℝ ∧ ( 𝐷 ‘ 𝑖 ) ∈ ℝ* ) → ( ( 𝐶 ‘ 𝑖 ) [,) ( 𝐷 ‘ 𝑖 ) ) ⊆ ℝ ) |
45 |
25 27 44
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑋 ) → ( ( 𝐶 ‘ 𝑖 ) [,) ( 𝐷 ‘ 𝑖 ) ) ⊆ ℝ ) |
46 |
45
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ X 𝑖 ∈ 𝑋 ( ( 𝐶 ‘ 𝑖 ) [,) ( 𝐷 ‘ 𝑖 ) ) ) ∧ 𝑖 ∈ 𝑋 ) → ( ( 𝐶 ‘ 𝑖 ) [,) ( 𝐷 ‘ 𝑖 ) ) ⊆ ℝ ) |
47 |
|
fvixp2 |
⊢ ( ( 𝑓 ∈ X 𝑖 ∈ 𝑋 ( ( 𝐶 ‘ 𝑖 ) [,) ( 𝐷 ‘ 𝑖 ) ) ∧ 𝑖 ∈ 𝑋 ) → ( 𝑓 ‘ 𝑖 ) ∈ ( ( 𝐶 ‘ 𝑖 ) [,) ( 𝐷 ‘ 𝑖 ) ) ) |
48 |
47
|
adantll |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ X 𝑖 ∈ 𝑋 ( ( 𝐶 ‘ 𝑖 ) [,) ( 𝐷 ‘ 𝑖 ) ) ) ∧ 𝑖 ∈ 𝑋 ) → ( 𝑓 ‘ 𝑖 ) ∈ ( ( 𝐶 ‘ 𝑖 ) [,) ( 𝐷 ‘ 𝑖 ) ) ) |
49 |
46 48
|
sseldd |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ X 𝑖 ∈ 𝑋 ( ( 𝐶 ‘ 𝑖 ) [,) ( 𝐷 ‘ 𝑖 ) ) ) ∧ 𝑖 ∈ 𝑋 ) → ( 𝑓 ‘ 𝑖 ) ∈ ℝ ) |
50 |
43 49
|
resubcld |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ X 𝑖 ∈ 𝑋 ( ( 𝐶 ‘ 𝑖 ) [,) ( 𝐷 ‘ 𝑖 ) ) ) ∧ 𝑖 ∈ 𝑋 ) → ( ( 𝑌 ‘ 𝑖 ) − ( 𝑓 ‘ 𝑖 ) ) ∈ ℝ ) |
51 |
|
2nn0 |
⊢ 2 ∈ ℕ0 |
52 |
51
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ X 𝑖 ∈ 𝑋 ( ( 𝐶 ‘ 𝑖 ) [,) ( 𝐷 ‘ 𝑖 ) ) ) ∧ 𝑖 ∈ 𝑋 ) → 2 ∈ ℕ0 ) |
53 |
50 52
|
reexpcld |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ X 𝑖 ∈ 𝑋 ( ( 𝐶 ‘ 𝑖 ) [,) ( 𝐷 ‘ 𝑖 ) ) ) ∧ 𝑖 ∈ 𝑋 ) → ( ( ( 𝑌 ‘ 𝑖 ) − ( 𝑓 ‘ 𝑖 ) ) ↑ 2 ) ∈ ℝ ) |
54 |
37 39 53
|
fsumreclf |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ X 𝑖 ∈ 𝑋 ( ( 𝐶 ‘ 𝑖 ) [,) ( 𝐷 ‘ 𝑖 ) ) ) → Σ 𝑖 ∈ 𝑋 ( ( ( 𝑌 ‘ 𝑖 ) − ( 𝑓 ‘ 𝑖 ) ) ↑ 2 ) ∈ ℝ ) |
55 |
|
fveq2 |
⊢ ( 𝑖 = 𝑗 → ( 𝐶 ‘ 𝑖 ) = ( 𝐶 ‘ 𝑗 ) ) |
56 |
|
fveq2 |
⊢ ( 𝑖 = 𝑗 → ( 𝐷 ‘ 𝑖 ) = ( 𝐷 ‘ 𝑗 ) ) |
57 |
55 56
|
oveq12d |
⊢ ( 𝑖 = 𝑗 → ( ( 𝐶 ‘ 𝑖 ) [,) ( 𝐷 ‘ 𝑖 ) ) = ( ( 𝐶 ‘ 𝑗 ) [,) ( 𝐷 ‘ 𝑗 ) ) ) |
58 |
57
|
cbvixpv |
⊢ X 𝑖 ∈ 𝑋 ( ( 𝐶 ‘ 𝑖 ) [,) ( 𝐷 ‘ 𝑖 ) ) = X 𝑗 ∈ 𝑋 ( ( 𝐶 ‘ 𝑗 ) [,) ( 𝐷 ‘ 𝑗 ) ) |
59 |
58
|
eleq2i |
⊢ ( 𝑓 ∈ X 𝑖 ∈ 𝑋 ( ( 𝐶 ‘ 𝑖 ) [,) ( 𝐷 ‘ 𝑖 ) ) ↔ 𝑓 ∈ X 𝑗 ∈ 𝑋 ( ( 𝐶 ‘ 𝑗 ) [,) ( 𝐷 ‘ 𝑗 ) ) ) |
60 |
59
|
biimpi |
⊢ ( 𝑓 ∈ X 𝑖 ∈ 𝑋 ( ( 𝐶 ‘ 𝑖 ) [,) ( 𝐷 ‘ 𝑖 ) ) → 𝑓 ∈ X 𝑗 ∈ 𝑋 ( ( 𝐶 ‘ 𝑗 ) [,) ( 𝐷 ‘ 𝑗 ) ) ) |
61 |
60
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ X 𝑖 ∈ 𝑋 ( ( 𝐶 ‘ 𝑖 ) [,) ( 𝐷 ‘ 𝑖 ) ) ) → 𝑓 ∈ X 𝑗 ∈ 𝑋 ( ( 𝐶 ‘ 𝑗 ) [,) ( 𝐷 ‘ 𝑗 ) ) ) |
62 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ X 𝑗 ∈ 𝑋 ( ( 𝐶 ‘ 𝑗 ) [,) ( 𝐷 ‘ 𝑗 ) ) ) → 𝑋 ∈ Fin ) |
63 |
|
simpll |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ X 𝑗 ∈ 𝑋 ( ( 𝐶 ‘ 𝑗 ) [,) ( 𝐷 ‘ 𝑗 ) ) ) ∧ 𝑖 ∈ 𝑋 ) → 𝜑 ) |
64 |
59
|
biimpri |
⊢ ( 𝑓 ∈ X 𝑗 ∈ 𝑋 ( ( 𝐶 ‘ 𝑗 ) [,) ( 𝐷 ‘ 𝑗 ) ) → 𝑓 ∈ X 𝑖 ∈ 𝑋 ( ( 𝐶 ‘ 𝑖 ) [,) ( 𝐷 ‘ 𝑖 ) ) ) |
65 |
64
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ X 𝑗 ∈ 𝑋 ( ( 𝐶 ‘ 𝑗 ) [,) ( 𝐷 ‘ 𝑗 ) ) ) ∧ 𝑖 ∈ 𝑋 ) → 𝑓 ∈ X 𝑖 ∈ 𝑋 ( ( 𝐶 ‘ 𝑖 ) [,) ( 𝐷 ‘ 𝑖 ) ) ) |
66 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ X 𝑗 ∈ 𝑋 ( ( 𝐶 ‘ 𝑗 ) [,) ( 𝐷 ‘ 𝑗 ) ) ) ∧ 𝑖 ∈ 𝑋 ) → 𝑖 ∈ 𝑋 ) |
67 |
63 65 66 53
|
syl21anc |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ X 𝑗 ∈ 𝑋 ( ( 𝐶 ‘ 𝑗 ) [,) ( 𝐷 ‘ 𝑗 ) ) ) ∧ 𝑖 ∈ 𝑋 ) → ( ( ( 𝑌 ‘ 𝑖 ) − ( 𝑓 ‘ 𝑖 ) ) ↑ 2 ) ∈ ℝ ) |
68 |
50
|
sqge0d |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ X 𝑖 ∈ 𝑋 ( ( 𝐶 ‘ 𝑖 ) [,) ( 𝐷 ‘ 𝑖 ) ) ) ∧ 𝑖 ∈ 𝑋 ) → 0 ≤ ( ( ( 𝑌 ‘ 𝑖 ) − ( 𝑓 ‘ 𝑖 ) ) ↑ 2 ) ) |
69 |
63 65 66 68
|
syl21anc |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ X 𝑗 ∈ 𝑋 ( ( 𝐶 ‘ 𝑗 ) [,) ( 𝐷 ‘ 𝑗 ) ) ) ∧ 𝑖 ∈ 𝑋 ) → 0 ≤ ( ( ( 𝑌 ‘ 𝑖 ) − ( 𝑓 ‘ 𝑖 ) ) ↑ 2 ) ) |
70 |
62 67 69
|
fsumge0 |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ X 𝑗 ∈ 𝑋 ( ( 𝐶 ‘ 𝑗 ) [,) ( 𝐷 ‘ 𝑗 ) ) ) → 0 ≤ Σ 𝑖 ∈ 𝑋 ( ( ( 𝑌 ‘ 𝑖 ) − ( 𝑓 ‘ 𝑖 ) ) ↑ 2 ) ) |
71 |
38 61 70
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ X 𝑖 ∈ 𝑋 ( ( 𝐶 ‘ 𝑖 ) [,) ( 𝐷 ‘ 𝑖 ) ) ) → 0 ≤ Σ 𝑖 ∈ 𝑋 ( ( ( 𝑌 ‘ 𝑖 ) − ( 𝑓 ‘ 𝑖 ) ) ↑ 2 ) ) |
72 |
54 71
|
resqrtcld |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ X 𝑖 ∈ 𝑋 ( ( 𝐶 ‘ 𝑖 ) [,) ( 𝐷 ‘ 𝑖 ) ) ) → ( √ ‘ Σ 𝑖 ∈ 𝑋 ( ( ( 𝑌 ‘ 𝑖 ) − ( 𝑓 ‘ 𝑖 ) ) ↑ 2 ) ) ∈ ℝ ) |
73 |
33 72
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ X 𝑖 ∈ 𝑋 ( ( 𝐶 ‘ 𝑖 ) [,) ( 𝐷 ‘ 𝑖 ) ) ) → ( 𝑌 ( dist ‘ ( ℝ^ ‘ 𝑋 ) ) 𝑓 ) ∈ ℝ ) |
74 |
26 25
|
resubcld |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑋 ) → ( ( 𝐷 ‘ 𝑖 ) − ( 𝐶 ‘ 𝑖 ) ) ∈ ℝ ) |
75 |
74
|
resqcld |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑋 ) → ( ( ( 𝐷 ‘ 𝑖 ) − ( 𝐶 ‘ 𝑖 ) ) ↑ 2 ) ∈ ℝ ) |
76 |
2 75
|
fsumrecl |
⊢ ( 𝜑 → Σ 𝑖 ∈ 𝑋 ( ( ( 𝐷 ‘ 𝑖 ) − ( 𝐶 ‘ 𝑖 ) ) ↑ 2 ) ∈ ℝ ) |
77 |
74
|
sqge0d |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑋 ) → 0 ≤ ( ( ( 𝐷 ‘ 𝑖 ) − ( 𝐶 ‘ 𝑖 ) ) ↑ 2 ) ) |
78 |
2 75 77
|
fsumge0 |
⊢ ( 𝜑 → 0 ≤ Σ 𝑖 ∈ 𝑋 ( ( ( 𝐷 ‘ 𝑖 ) − ( 𝐶 ‘ 𝑖 ) ) ↑ 2 ) ) |
79 |
76 78
|
resqrtcld |
⊢ ( 𝜑 → ( √ ‘ Σ 𝑖 ∈ 𝑋 ( ( ( 𝐷 ‘ 𝑖 ) − ( 𝐶 ‘ 𝑖 ) ) ↑ 2 ) ) ∈ ℝ ) |
80 |
79
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ X 𝑖 ∈ 𝑋 ( ( 𝐶 ‘ 𝑖 ) [,) ( 𝐷 ‘ 𝑖 ) ) ) → ( √ ‘ Σ 𝑖 ∈ 𝑋 ( ( ( 𝐷 ‘ 𝑖 ) − ( 𝐶 ‘ 𝑖 ) ) ↑ 2 ) ) ∈ ℝ ) |
81 |
7
|
rpred |
⊢ ( 𝜑 → 𝐸 ∈ ℝ ) |
82 |
81
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ X 𝑖 ∈ 𝑋 ( ( 𝐶 ‘ 𝑖 ) [,) ( 𝐷 ‘ 𝑖 ) ) ) → 𝐸 ∈ ℝ ) |
83 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ X 𝑗 ∈ 𝑋 ( ( 𝐶 ‘ 𝑗 ) [,) ( 𝐷 ‘ 𝑗 ) ) ) → 𝑋 ≠ ∅ ) |
84 |
75
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ X 𝑗 ∈ 𝑋 ( ( 𝐶 ‘ 𝑗 ) [,) ( 𝐷 ‘ 𝑗 ) ) ) ∧ 𝑖 ∈ 𝑋 ) → ( ( ( 𝐷 ‘ 𝑖 ) − ( 𝐶 ‘ 𝑖 ) ) ↑ 2 ) ∈ ℝ ) |
85 |
38 26
|
sylan |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ X 𝑖 ∈ 𝑋 ( ( 𝐶 ‘ 𝑖 ) [,) ( 𝐷 ‘ 𝑖 ) ) ) ∧ 𝑖 ∈ 𝑋 ) → ( 𝐷 ‘ 𝑖 ) ∈ ℝ ) |
86 |
38 25
|
sylan |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ X 𝑖 ∈ 𝑋 ( ( 𝐶 ‘ 𝑖 ) [,) ( 𝐷 ‘ 𝑖 ) ) ) ∧ 𝑖 ∈ 𝑋 ) → ( 𝐶 ‘ 𝑖 ) ∈ ℝ ) |
87 |
85 86
|
resubcld |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ X 𝑖 ∈ 𝑋 ( ( 𝐶 ‘ 𝑖 ) [,) ( 𝐷 ‘ 𝑖 ) ) ) ∧ 𝑖 ∈ 𝑋 ) → ( ( 𝐷 ‘ 𝑖 ) − ( 𝐶 ‘ 𝑖 ) ) ∈ ℝ ) |
88 |
25
|
rexrd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑋 ) → ( 𝐶 ‘ 𝑖 ) ∈ ℝ* ) |
89 |
42
|
rexrd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑋 ) → ( 𝑌 ‘ 𝑖 ) ∈ ℝ* ) |
90 |
|
2rp |
⊢ 2 ∈ ℝ+ |
91 |
90
|
a1i |
⊢ ( 𝜑 → 2 ∈ ℝ+ ) |
92 |
|
hashnncl |
⊢ ( 𝑋 ∈ Fin → ( ( ♯ ‘ 𝑋 ) ∈ ℕ ↔ 𝑋 ≠ ∅ ) ) |
93 |
2 92
|
syl |
⊢ ( 𝜑 → ( ( ♯ ‘ 𝑋 ) ∈ ℕ ↔ 𝑋 ≠ ∅ ) ) |
94 |
3 93
|
mpbird |
⊢ ( 𝜑 → ( ♯ ‘ 𝑋 ) ∈ ℕ ) |
95 |
94
|
nnred |
⊢ ( 𝜑 → ( ♯ ‘ 𝑋 ) ∈ ℝ ) |
96 |
94
|
nngt0d |
⊢ ( 𝜑 → 0 < ( ♯ ‘ 𝑋 ) ) |
97 |
95 96
|
elrpd |
⊢ ( 𝜑 → ( ♯ ‘ 𝑋 ) ∈ ℝ+ ) |
98 |
97
|
rpsqrtcld |
⊢ ( 𝜑 → ( √ ‘ ( ♯ ‘ 𝑋 ) ) ∈ ℝ+ ) |
99 |
91 98
|
rpmulcld |
⊢ ( 𝜑 → ( 2 · ( √ ‘ ( ♯ ‘ 𝑋 ) ) ) ∈ ℝ+ ) |
100 |
7 99
|
rpdivcld |
⊢ ( 𝜑 → ( 𝐸 / ( 2 · ( √ ‘ ( ♯ ‘ 𝑋 ) ) ) ) ∈ ℝ+ ) |
101 |
100
|
rpred |
⊢ ( 𝜑 → ( 𝐸 / ( 2 · ( √ ‘ ( ♯ ‘ 𝑋 ) ) ) ) ∈ ℝ ) |
102 |
101
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑋 ) → ( 𝐸 / ( 2 · ( √ ‘ ( ♯ ‘ 𝑋 ) ) ) ) ∈ ℝ ) |
103 |
42 102
|
resubcld |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑋 ) → ( ( 𝑌 ‘ 𝑖 ) − ( 𝐸 / ( 2 · ( √ ‘ ( ♯ ‘ 𝑋 ) ) ) ) ) ∈ ℝ ) |
104 |
103
|
rexrd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑋 ) → ( ( 𝑌 ‘ 𝑖 ) − ( 𝐸 / ( 2 · ( √ ‘ ( ♯ ‘ 𝑋 ) ) ) ) ) ∈ ℝ* ) |
105 |
|
iooltub |
⊢ ( ( ( ( 𝑌 ‘ 𝑖 ) − ( 𝐸 / ( 2 · ( √ ‘ ( ♯ ‘ 𝑋 ) ) ) ) ) ∈ ℝ* ∧ ( 𝑌 ‘ 𝑖 ) ∈ ℝ* ∧ ( 𝐶 ‘ 𝑖 ) ∈ ( ( ( 𝑌 ‘ 𝑖 ) − ( 𝐸 / ( 2 · ( √ ‘ ( ♯ ‘ 𝑋 ) ) ) ) ) (,) ( 𝑌 ‘ 𝑖 ) ) ) → ( 𝐶 ‘ 𝑖 ) < ( 𝑌 ‘ 𝑖 ) ) |
106 |
104 89 8 105
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑋 ) → ( 𝐶 ‘ 𝑖 ) < ( 𝑌 ‘ 𝑖 ) ) |
107 |
25 42 106
|
ltled |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑋 ) → ( 𝐶 ‘ 𝑖 ) ≤ ( 𝑌 ‘ 𝑖 ) ) |
108 |
42 102
|
readdcld |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑋 ) → ( ( 𝑌 ‘ 𝑖 ) + ( 𝐸 / ( 2 · ( √ ‘ ( ♯ ‘ 𝑋 ) ) ) ) ) ∈ ℝ ) |
109 |
108
|
rexrd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑋 ) → ( ( 𝑌 ‘ 𝑖 ) + ( 𝐸 / ( 2 · ( √ ‘ ( ♯ ‘ 𝑋 ) ) ) ) ) ∈ ℝ* ) |
110 |
|
ioogtlb |
⊢ ( ( ( 𝑌 ‘ 𝑖 ) ∈ ℝ* ∧ ( ( 𝑌 ‘ 𝑖 ) + ( 𝐸 / ( 2 · ( √ ‘ ( ♯ ‘ 𝑋 ) ) ) ) ) ∈ ℝ* ∧ ( 𝐷 ‘ 𝑖 ) ∈ ( ( 𝑌 ‘ 𝑖 ) (,) ( ( 𝑌 ‘ 𝑖 ) + ( 𝐸 / ( 2 · ( √ ‘ ( ♯ ‘ 𝑋 ) ) ) ) ) ) ) → ( 𝑌 ‘ 𝑖 ) < ( 𝐷 ‘ 𝑖 ) ) |
111 |
89 109 9 110
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑋 ) → ( 𝑌 ‘ 𝑖 ) < ( 𝐷 ‘ 𝑖 ) ) |
112 |
88 27 89 107 111
|
elicod |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑋 ) → ( 𝑌 ‘ 𝑖 ) ∈ ( ( 𝐶 ‘ 𝑖 ) [,) ( 𝐷 ‘ 𝑖 ) ) ) |
113 |
38 112
|
sylan |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ X 𝑖 ∈ 𝑋 ( ( 𝐶 ‘ 𝑖 ) [,) ( 𝐷 ‘ 𝑖 ) ) ) ∧ 𝑖 ∈ 𝑋 ) → ( 𝑌 ‘ 𝑖 ) ∈ ( ( 𝐶 ‘ 𝑖 ) [,) ( 𝐷 ‘ 𝑖 ) ) ) |
114 |
|
icodiamlt |
⊢ ( ( ( ( 𝐶 ‘ 𝑖 ) ∈ ℝ ∧ ( 𝐷 ‘ 𝑖 ) ∈ ℝ ) ∧ ( ( 𝑌 ‘ 𝑖 ) ∈ ( ( 𝐶 ‘ 𝑖 ) [,) ( 𝐷 ‘ 𝑖 ) ) ∧ ( 𝑓 ‘ 𝑖 ) ∈ ( ( 𝐶 ‘ 𝑖 ) [,) ( 𝐷 ‘ 𝑖 ) ) ) ) → ( abs ‘ ( ( 𝑌 ‘ 𝑖 ) − ( 𝑓 ‘ 𝑖 ) ) ) < ( ( 𝐷 ‘ 𝑖 ) − ( 𝐶 ‘ 𝑖 ) ) ) |
115 |
86 85 113 48 114
|
syl22anc |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ X 𝑖 ∈ 𝑋 ( ( 𝐶 ‘ 𝑖 ) [,) ( 𝐷 ‘ 𝑖 ) ) ) ∧ 𝑖 ∈ 𝑋 ) → ( abs ‘ ( ( 𝑌 ‘ 𝑖 ) − ( 𝑓 ‘ 𝑖 ) ) ) < ( ( 𝐷 ‘ 𝑖 ) − ( 𝐶 ‘ 𝑖 ) ) ) |
116 |
|
0red |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑋 ) → 0 ∈ ℝ ) |
117 |
25 42 26 107 111
|
lelttrd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑋 ) → ( 𝐶 ‘ 𝑖 ) < ( 𝐷 ‘ 𝑖 ) ) |
118 |
25 26
|
posdifd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑋 ) → ( ( 𝐶 ‘ 𝑖 ) < ( 𝐷 ‘ 𝑖 ) ↔ 0 < ( ( 𝐷 ‘ 𝑖 ) − ( 𝐶 ‘ 𝑖 ) ) ) ) |
119 |
117 118
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑋 ) → 0 < ( ( 𝐷 ‘ 𝑖 ) − ( 𝐶 ‘ 𝑖 ) ) ) |
120 |
116 74 119
|
ltled |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑋 ) → 0 ≤ ( ( 𝐷 ‘ 𝑖 ) − ( 𝐶 ‘ 𝑖 ) ) ) |
121 |
74 120
|
absidd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑋 ) → ( abs ‘ ( ( 𝐷 ‘ 𝑖 ) − ( 𝐶 ‘ 𝑖 ) ) ) = ( ( 𝐷 ‘ 𝑖 ) − ( 𝐶 ‘ 𝑖 ) ) ) |
122 |
121
|
eqcomd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑋 ) → ( ( 𝐷 ‘ 𝑖 ) − ( 𝐶 ‘ 𝑖 ) ) = ( abs ‘ ( ( 𝐷 ‘ 𝑖 ) − ( 𝐶 ‘ 𝑖 ) ) ) ) |
123 |
122
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ X 𝑖 ∈ 𝑋 ( ( 𝐶 ‘ 𝑖 ) [,) ( 𝐷 ‘ 𝑖 ) ) ) ∧ 𝑖 ∈ 𝑋 ) → ( ( 𝐷 ‘ 𝑖 ) − ( 𝐶 ‘ 𝑖 ) ) = ( abs ‘ ( ( 𝐷 ‘ 𝑖 ) − ( 𝐶 ‘ 𝑖 ) ) ) ) |
124 |
115 123
|
breqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ X 𝑖 ∈ 𝑋 ( ( 𝐶 ‘ 𝑖 ) [,) ( 𝐷 ‘ 𝑖 ) ) ) ∧ 𝑖 ∈ 𝑋 ) → ( abs ‘ ( ( 𝑌 ‘ 𝑖 ) − ( 𝑓 ‘ 𝑖 ) ) ) < ( abs ‘ ( ( 𝐷 ‘ 𝑖 ) − ( 𝐶 ‘ 𝑖 ) ) ) ) |
125 |
50 87 124
|
abslt2sqd |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ X 𝑖 ∈ 𝑋 ( ( 𝐶 ‘ 𝑖 ) [,) ( 𝐷 ‘ 𝑖 ) ) ) ∧ 𝑖 ∈ 𝑋 ) → ( ( ( 𝑌 ‘ 𝑖 ) − ( 𝑓 ‘ 𝑖 ) ) ↑ 2 ) < ( ( ( 𝐷 ‘ 𝑖 ) − ( 𝐶 ‘ 𝑖 ) ) ↑ 2 ) ) |
126 |
63 65 66 125
|
syl21anc |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ X 𝑗 ∈ 𝑋 ( ( 𝐶 ‘ 𝑗 ) [,) ( 𝐷 ‘ 𝑗 ) ) ) ∧ 𝑖 ∈ 𝑋 ) → ( ( ( 𝑌 ‘ 𝑖 ) − ( 𝑓 ‘ 𝑖 ) ) ↑ 2 ) < ( ( ( 𝐷 ‘ 𝑖 ) − ( 𝐶 ‘ 𝑖 ) ) ↑ 2 ) ) |
127 |
62 83 67 84 126
|
fsumlt |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ X 𝑗 ∈ 𝑋 ( ( 𝐶 ‘ 𝑗 ) [,) ( 𝐷 ‘ 𝑗 ) ) ) → Σ 𝑖 ∈ 𝑋 ( ( ( 𝑌 ‘ 𝑖 ) − ( 𝑓 ‘ 𝑖 ) ) ↑ 2 ) < Σ 𝑖 ∈ 𝑋 ( ( ( 𝐷 ‘ 𝑖 ) − ( 𝐶 ‘ 𝑖 ) ) ↑ 2 ) ) |
128 |
38 61 127
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ X 𝑖 ∈ 𝑋 ( ( 𝐶 ‘ 𝑖 ) [,) ( 𝐷 ‘ 𝑖 ) ) ) → Σ 𝑖 ∈ 𝑋 ( ( ( 𝑌 ‘ 𝑖 ) − ( 𝑓 ‘ 𝑖 ) ) ↑ 2 ) < Σ 𝑖 ∈ 𝑋 ( ( ( 𝐷 ‘ 𝑖 ) − ( 𝐶 ‘ 𝑖 ) ) ↑ 2 ) ) |
129 |
38 76
|
syl |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ X 𝑖 ∈ 𝑋 ( ( 𝐶 ‘ 𝑖 ) [,) ( 𝐷 ‘ 𝑖 ) ) ) → Σ 𝑖 ∈ 𝑋 ( ( ( 𝐷 ‘ 𝑖 ) − ( 𝐶 ‘ 𝑖 ) ) ↑ 2 ) ∈ ℝ ) |
130 |
38 78
|
syl |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ X 𝑖 ∈ 𝑋 ( ( 𝐶 ‘ 𝑖 ) [,) ( 𝐷 ‘ 𝑖 ) ) ) → 0 ≤ Σ 𝑖 ∈ 𝑋 ( ( ( 𝐷 ‘ 𝑖 ) − ( 𝐶 ‘ 𝑖 ) ) ↑ 2 ) ) |
131 |
54 71 129 130
|
sqrtltd |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ X 𝑖 ∈ 𝑋 ( ( 𝐶 ‘ 𝑖 ) [,) ( 𝐷 ‘ 𝑖 ) ) ) → ( Σ 𝑖 ∈ 𝑋 ( ( ( 𝑌 ‘ 𝑖 ) − ( 𝑓 ‘ 𝑖 ) ) ↑ 2 ) < Σ 𝑖 ∈ 𝑋 ( ( ( 𝐷 ‘ 𝑖 ) − ( 𝐶 ‘ 𝑖 ) ) ↑ 2 ) ↔ ( √ ‘ Σ 𝑖 ∈ 𝑋 ( ( ( 𝑌 ‘ 𝑖 ) − ( 𝑓 ‘ 𝑖 ) ) ↑ 2 ) ) < ( √ ‘ Σ 𝑖 ∈ 𝑋 ( ( ( 𝐷 ‘ 𝑖 ) − ( 𝐶 ‘ 𝑖 ) ) ↑ 2 ) ) ) ) |
132 |
128 131
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ X 𝑖 ∈ 𝑋 ( ( 𝐶 ‘ 𝑖 ) [,) ( 𝐷 ‘ 𝑖 ) ) ) → ( √ ‘ Σ 𝑖 ∈ 𝑋 ( ( ( 𝑌 ‘ 𝑖 ) − ( 𝑓 ‘ 𝑖 ) ) ↑ 2 ) ) < ( √ ‘ Σ 𝑖 ∈ 𝑋 ( ( ( 𝐷 ‘ 𝑖 ) − ( 𝐶 ‘ 𝑖 ) ) ↑ 2 ) ) ) |
133 |
33 132
|
eqbrtrd |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ X 𝑖 ∈ 𝑋 ( ( 𝐶 ‘ 𝑖 ) [,) ( 𝐷 ‘ 𝑖 ) ) ) → ( 𝑌 ( dist ‘ ( ℝ^ ‘ 𝑋 ) ) 𝑓 ) < ( √ ‘ Σ 𝑖 ∈ 𝑋 ( ( ( 𝐷 ‘ 𝑖 ) − ( 𝐶 ‘ 𝑖 ) ) ↑ 2 ) ) ) |
134 |
81 98
|
rerpdivcld |
⊢ ( 𝜑 → ( 𝐸 / ( √ ‘ ( ♯ ‘ 𝑋 ) ) ) ∈ ℝ ) |
135 |
134
|
resqcld |
⊢ ( 𝜑 → ( ( 𝐸 / ( √ ‘ ( ♯ ‘ 𝑋 ) ) ) ↑ 2 ) ∈ ℝ ) |
136 |
135
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑋 ) → ( ( 𝐸 / ( √ ‘ ( ♯ ‘ 𝑋 ) ) ) ↑ 2 ) ∈ ℝ ) |
137 |
26 25
|
jca |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑋 ) → ( ( 𝐷 ‘ 𝑖 ) ∈ ℝ ∧ ( 𝐶 ‘ 𝑖 ) ∈ ℝ ) ) |
138 |
108 103
|
jca |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑋 ) → ( ( ( 𝑌 ‘ 𝑖 ) + ( 𝐸 / ( 2 · ( √ ‘ ( ♯ ‘ 𝑋 ) ) ) ) ) ∈ ℝ ∧ ( ( 𝑌 ‘ 𝑖 ) − ( 𝐸 / ( 2 · ( √ ‘ ( ♯ ‘ 𝑋 ) ) ) ) ) ∈ ℝ ) ) |
139 |
137 138
|
jca |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑋 ) → ( ( ( 𝐷 ‘ 𝑖 ) ∈ ℝ ∧ ( 𝐶 ‘ 𝑖 ) ∈ ℝ ) ∧ ( ( ( 𝑌 ‘ 𝑖 ) + ( 𝐸 / ( 2 · ( √ ‘ ( ♯ ‘ 𝑋 ) ) ) ) ) ∈ ℝ ∧ ( ( 𝑌 ‘ 𝑖 ) − ( 𝐸 / ( 2 · ( √ ‘ ( ♯ ‘ 𝑋 ) ) ) ) ) ∈ ℝ ) ) ) |
140 |
|
iooltub |
⊢ ( ( ( 𝑌 ‘ 𝑖 ) ∈ ℝ* ∧ ( ( 𝑌 ‘ 𝑖 ) + ( 𝐸 / ( 2 · ( √ ‘ ( ♯ ‘ 𝑋 ) ) ) ) ) ∈ ℝ* ∧ ( 𝐷 ‘ 𝑖 ) ∈ ( ( 𝑌 ‘ 𝑖 ) (,) ( ( 𝑌 ‘ 𝑖 ) + ( 𝐸 / ( 2 · ( √ ‘ ( ♯ ‘ 𝑋 ) ) ) ) ) ) ) → ( 𝐷 ‘ 𝑖 ) < ( ( 𝑌 ‘ 𝑖 ) + ( 𝐸 / ( 2 · ( √ ‘ ( ♯ ‘ 𝑋 ) ) ) ) ) ) |
141 |
89 109 9 140
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑋 ) → ( 𝐷 ‘ 𝑖 ) < ( ( 𝑌 ‘ 𝑖 ) + ( 𝐸 / ( 2 · ( √ ‘ ( ♯ ‘ 𝑋 ) ) ) ) ) ) |
142 |
|
ioogtlb |
⊢ ( ( ( ( 𝑌 ‘ 𝑖 ) − ( 𝐸 / ( 2 · ( √ ‘ ( ♯ ‘ 𝑋 ) ) ) ) ) ∈ ℝ* ∧ ( 𝑌 ‘ 𝑖 ) ∈ ℝ* ∧ ( 𝐶 ‘ 𝑖 ) ∈ ( ( ( 𝑌 ‘ 𝑖 ) − ( 𝐸 / ( 2 · ( √ ‘ ( ♯ ‘ 𝑋 ) ) ) ) ) (,) ( 𝑌 ‘ 𝑖 ) ) ) → ( ( 𝑌 ‘ 𝑖 ) − ( 𝐸 / ( 2 · ( √ ‘ ( ♯ ‘ 𝑋 ) ) ) ) ) < ( 𝐶 ‘ 𝑖 ) ) |
143 |
104 89 8 142
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑋 ) → ( ( 𝑌 ‘ 𝑖 ) − ( 𝐸 / ( 2 · ( √ ‘ ( ♯ ‘ 𝑋 ) ) ) ) ) < ( 𝐶 ‘ 𝑖 ) ) |
144 |
141 143
|
jca |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑋 ) → ( ( 𝐷 ‘ 𝑖 ) < ( ( 𝑌 ‘ 𝑖 ) + ( 𝐸 / ( 2 · ( √ ‘ ( ♯ ‘ 𝑋 ) ) ) ) ) ∧ ( ( 𝑌 ‘ 𝑖 ) − ( 𝐸 / ( 2 · ( √ ‘ ( ♯ ‘ 𝑋 ) ) ) ) ) < ( 𝐶 ‘ 𝑖 ) ) ) |
145 |
|
lt2sub |
⊢ ( ( ( ( 𝐷 ‘ 𝑖 ) ∈ ℝ ∧ ( 𝐶 ‘ 𝑖 ) ∈ ℝ ) ∧ ( ( ( 𝑌 ‘ 𝑖 ) + ( 𝐸 / ( 2 · ( √ ‘ ( ♯ ‘ 𝑋 ) ) ) ) ) ∈ ℝ ∧ ( ( 𝑌 ‘ 𝑖 ) − ( 𝐸 / ( 2 · ( √ ‘ ( ♯ ‘ 𝑋 ) ) ) ) ) ∈ ℝ ) ) → ( ( ( 𝐷 ‘ 𝑖 ) < ( ( 𝑌 ‘ 𝑖 ) + ( 𝐸 / ( 2 · ( √ ‘ ( ♯ ‘ 𝑋 ) ) ) ) ) ∧ ( ( 𝑌 ‘ 𝑖 ) − ( 𝐸 / ( 2 · ( √ ‘ ( ♯ ‘ 𝑋 ) ) ) ) ) < ( 𝐶 ‘ 𝑖 ) ) → ( ( 𝐷 ‘ 𝑖 ) − ( 𝐶 ‘ 𝑖 ) ) < ( ( ( 𝑌 ‘ 𝑖 ) + ( 𝐸 / ( 2 · ( √ ‘ ( ♯ ‘ 𝑋 ) ) ) ) ) − ( ( 𝑌 ‘ 𝑖 ) − ( 𝐸 / ( 2 · ( √ ‘ ( ♯ ‘ 𝑋 ) ) ) ) ) ) ) ) |
146 |
139 144 145
|
sylc |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑋 ) → ( ( 𝐷 ‘ 𝑖 ) − ( 𝐶 ‘ 𝑖 ) ) < ( ( ( 𝑌 ‘ 𝑖 ) + ( 𝐸 / ( 2 · ( √ ‘ ( ♯ ‘ 𝑋 ) ) ) ) ) − ( ( 𝑌 ‘ 𝑖 ) − ( 𝐸 / ( 2 · ( √ ‘ ( ♯ ‘ 𝑋 ) ) ) ) ) ) ) |
147 |
42
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑋 ) → ( 𝑌 ‘ 𝑖 ) ∈ ℂ ) |
148 |
102
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑋 ) → ( 𝐸 / ( 2 · ( √ ‘ ( ♯ ‘ 𝑋 ) ) ) ) ∈ ℂ ) |
149 |
147 148 148
|
pnncand |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑋 ) → ( ( ( 𝑌 ‘ 𝑖 ) + ( 𝐸 / ( 2 · ( √ ‘ ( ♯ ‘ 𝑋 ) ) ) ) ) − ( ( 𝑌 ‘ 𝑖 ) − ( 𝐸 / ( 2 · ( √ ‘ ( ♯ ‘ 𝑋 ) ) ) ) ) ) = ( ( 𝐸 / ( 2 · ( √ ‘ ( ♯ ‘ 𝑋 ) ) ) ) + ( 𝐸 / ( 2 · ( √ ‘ ( ♯ ‘ 𝑋 ) ) ) ) ) ) |
150 |
81
|
recnd |
⊢ ( 𝜑 → 𝐸 ∈ ℂ ) |
151 |
98
|
rpcnd |
⊢ ( 𝜑 → ( √ ‘ ( ♯ ‘ 𝑋 ) ) ∈ ℂ ) |
152 |
|
2cnd |
⊢ ( 𝜑 → 2 ∈ ℂ ) |
153 |
98
|
rpne0d |
⊢ ( 𝜑 → ( √ ‘ ( ♯ ‘ 𝑋 ) ) ≠ 0 ) |
154 |
91
|
rpne0d |
⊢ ( 𝜑 → 2 ≠ 0 ) |
155 |
150 151 152 153 154
|
divdiv3d |
⊢ ( 𝜑 → ( ( 𝐸 / ( √ ‘ ( ♯ ‘ 𝑋 ) ) ) / 2 ) = ( 𝐸 / ( 2 · ( √ ‘ ( ♯ ‘ 𝑋 ) ) ) ) ) |
156 |
155
|
eqcomd |
⊢ ( 𝜑 → ( 𝐸 / ( 2 · ( √ ‘ ( ♯ ‘ 𝑋 ) ) ) ) = ( ( 𝐸 / ( √ ‘ ( ♯ ‘ 𝑋 ) ) ) / 2 ) ) |
157 |
156 156
|
oveq12d |
⊢ ( 𝜑 → ( ( 𝐸 / ( 2 · ( √ ‘ ( ♯ ‘ 𝑋 ) ) ) ) + ( 𝐸 / ( 2 · ( √ ‘ ( ♯ ‘ 𝑋 ) ) ) ) ) = ( ( ( 𝐸 / ( √ ‘ ( ♯ ‘ 𝑋 ) ) ) / 2 ) + ( ( 𝐸 / ( √ ‘ ( ♯ ‘ 𝑋 ) ) ) / 2 ) ) ) |
158 |
150 151 153
|
divcld |
⊢ ( 𝜑 → ( 𝐸 / ( √ ‘ ( ♯ ‘ 𝑋 ) ) ) ∈ ℂ ) |
159 |
158
|
2halvesd |
⊢ ( 𝜑 → ( ( ( 𝐸 / ( √ ‘ ( ♯ ‘ 𝑋 ) ) ) / 2 ) + ( ( 𝐸 / ( √ ‘ ( ♯ ‘ 𝑋 ) ) ) / 2 ) ) = ( 𝐸 / ( √ ‘ ( ♯ ‘ 𝑋 ) ) ) ) |
160 |
157 159
|
eqtrd |
⊢ ( 𝜑 → ( ( 𝐸 / ( 2 · ( √ ‘ ( ♯ ‘ 𝑋 ) ) ) ) + ( 𝐸 / ( 2 · ( √ ‘ ( ♯ ‘ 𝑋 ) ) ) ) ) = ( 𝐸 / ( √ ‘ ( ♯ ‘ 𝑋 ) ) ) ) |
161 |
160
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑋 ) → ( ( 𝐸 / ( 2 · ( √ ‘ ( ♯ ‘ 𝑋 ) ) ) ) + ( 𝐸 / ( 2 · ( √ ‘ ( ♯ ‘ 𝑋 ) ) ) ) ) = ( 𝐸 / ( √ ‘ ( ♯ ‘ 𝑋 ) ) ) ) |
162 |
149 161
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑋 ) → ( ( ( 𝑌 ‘ 𝑖 ) + ( 𝐸 / ( 2 · ( √ ‘ ( ♯ ‘ 𝑋 ) ) ) ) ) − ( ( 𝑌 ‘ 𝑖 ) − ( 𝐸 / ( 2 · ( √ ‘ ( ♯ ‘ 𝑋 ) ) ) ) ) ) = ( 𝐸 / ( √ ‘ ( ♯ ‘ 𝑋 ) ) ) ) |
163 |
146 162
|
breqtrd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑋 ) → ( ( 𝐷 ‘ 𝑖 ) − ( 𝐶 ‘ 𝑖 ) ) < ( 𝐸 / ( √ ‘ ( ♯ ‘ 𝑋 ) ) ) ) |
164 |
134
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑋 ) → ( 𝐸 / ( √ ‘ ( ♯ ‘ 𝑋 ) ) ) ∈ ℝ ) |
165 |
|
0red |
⊢ ( 𝜑 → 0 ∈ ℝ ) |
166 |
98
|
rpred |
⊢ ( 𝜑 → ( √ ‘ ( ♯ ‘ 𝑋 ) ) ∈ ℝ ) |
167 |
7
|
rpgt0d |
⊢ ( 𝜑 → 0 < 𝐸 ) |
168 |
98
|
rpgt0d |
⊢ ( 𝜑 → 0 < ( √ ‘ ( ♯ ‘ 𝑋 ) ) ) |
169 |
81 166 167 168
|
divgt0d |
⊢ ( 𝜑 → 0 < ( 𝐸 / ( √ ‘ ( ♯ ‘ 𝑋 ) ) ) ) |
170 |
165 134 169
|
ltled |
⊢ ( 𝜑 → 0 ≤ ( 𝐸 / ( √ ‘ ( ♯ ‘ 𝑋 ) ) ) ) |
171 |
170
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑋 ) → 0 ≤ ( 𝐸 / ( √ ‘ ( ♯ ‘ 𝑋 ) ) ) ) |
172 |
|
lt2sq |
⊢ ( ( ( ( ( 𝐷 ‘ 𝑖 ) − ( 𝐶 ‘ 𝑖 ) ) ∈ ℝ ∧ 0 ≤ ( ( 𝐷 ‘ 𝑖 ) − ( 𝐶 ‘ 𝑖 ) ) ) ∧ ( ( 𝐸 / ( √ ‘ ( ♯ ‘ 𝑋 ) ) ) ∈ ℝ ∧ 0 ≤ ( 𝐸 / ( √ ‘ ( ♯ ‘ 𝑋 ) ) ) ) ) → ( ( ( 𝐷 ‘ 𝑖 ) − ( 𝐶 ‘ 𝑖 ) ) < ( 𝐸 / ( √ ‘ ( ♯ ‘ 𝑋 ) ) ) ↔ ( ( ( 𝐷 ‘ 𝑖 ) − ( 𝐶 ‘ 𝑖 ) ) ↑ 2 ) < ( ( 𝐸 / ( √ ‘ ( ♯ ‘ 𝑋 ) ) ) ↑ 2 ) ) ) |
173 |
74 120 164 171 172
|
syl22anc |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑋 ) → ( ( ( 𝐷 ‘ 𝑖 ) − ( 𝐶 ‘ 𝑖 ) ) < ( 𝐸 / ( √ ‘ ( ♯ ‘ 𝑋 ) ) ) ↔ ( ( ( 𝐷 ‘ 𝑖 ) − ( 𝐶 ‘ 𝑖 ) ) ↑ 2 ) < ( ( 𝐸 / ( √ ‘ ( ♯ ‘ 𝑋 ) ) ) ↑ 2 ) ) ) |
174 |
163 173
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑋 ) → ( ( ( 𝐷 ‘ 𝑖 ) − ( 𝐶 ‘ 𝑖 ) ) ↑ 2 ) < ( ( 𝐸 / ( √ ‘ ( ♯ ‘ 𝑋 ) ) ) ↑ 2 ) ) |
175 |
2 3 75 136 174
|
fsumlt |
⊢ ( 𝜑 → Σ 𝑖 ∈ 𝑋 ( ( ( 𝐷 ‘ 𝑖 ) − ( 𝐶 ‘ 𝑖 ) ) ↑ 2 ) < Σ 𝑖 ∈ 𝑋 ( ( 𝐸 / ( √ ‘ ( ♯ ‘ 𝑋 ) ) ) ↑ 2 ) ) |
176 |
2 136
|
fsumrecl |
⊢ ( 𝜑 → Σ 𝑖 ∈ 𝑋 ( ( 𝐸 / ( √ ‘ ( ♯ ‘ 𝑋 ) ) ) ↑ 2 ) ∈ ℝ ) |
177 |
164
|
sqge0d |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑋 ) → 0 ≤ ( ( 𝐸 / ( √ ‘ ( ♯ ‘ 𝑋 ) ) ) ↑ 2 ) ) |
178 |
2 136 177
|
fsumge0 |
⊢ ( 𝜑 → 0 ≤ Σ 𝑖 ∈ 𝑋 ( ( 𝐸 / ( √ ‘ ( ♯ ‘ 𝑋 ) ) ) ↑ 2 ) ) |
179 |
76 78 176 178
|
sqrtltd |
⊢ ( 𝜑 → ( Σ 𝑖 ∈ 𝑋 ( ( ( 𝐷 ‘ 𝑖 ) − ( 𝐶 ‘ 𝑖 ) ) ↑ 2 ) < Σ 𝑖 ∈ 𝑋 ( ( 𝐸 / ( √ ‘ ( ♯ ‘ 𝑋 ) ) ) ↑ 2 ) ↔ ( √ ‘ Σ 𝑖 ∈ 𝑋 ( ( ( 𝐷 ‘ 𝑖 ) − ( 𝐶 ‘ 𝑖 ) ) ↑ 2 ) ) < ( √ ‘ Σ 𝑖 ∈ 𝑋 ( ( 𝐸 / ( √ ‘ ( ♯ ‘ 𝑋 ) ) ) ↑ 2 ) ) ) ) |
180 |
175 179
|
mpbid |
⊢ ( 𝜑 → ( √ ‘ Σ 𝑖 ∈ 𝑋 ( ( ( 𝐷 ‘ 𝑖 ) − ( 𝐶 ‘ 𝑖 ) ) ↑ 2 ) ) < ( √ ‘ Σ 𝑖 ∈ 𝑋 ( ( 𝐸 / ( √ ‘ ( ♯ ‘ 𝑋 ) ) ) ↑ 2 ) ) ) |
181 |
135
|
recnd |
⊢ ( 𝜑 → ( ( 𝐸 / ( √ ‘ ( ♯ ‘ 𝑋 ) ) ) ↑ 2 ) ∈ ℂ ) |
182 |
|
fsumconst |
⊢ ( ( 𝑋 ∈ Fin ∧ ( ( 𝐸 / ( √ ‘ ( ♯ ‘ 𝑋 ) ) ) ↑ 2 ) ∈ ℂ ) → Σ 𝑖 ∈ 𝑋 ( ( 𝐸 / ( √ ‘ ( ♯ ‘ 𝑋 ) ) ) ↑ 2 ) = ( ( ♯ ‘ 𝑋 ) · ( ( 𝐸 / ( √ ‘ ( ♯ ‘ 𝑋 ) ) ) ↑ 2 ) ) ) |
183 |
2 181 182
|
syl2anc |
⊢ ( 𝜑 → Σ 𝑖 ∈ 𝑋 ( ( 𝐸 / ( √ ‘ ( ♯ ‘ 𝑋 ) ) ) ↑ 2 ) = ( ( ♯ ‘ 𝑋 ) · ( ( 𝐸 / ( √ ‘ ( ♯ ‘ 𝑋 ) ) ) ↑ 2 ) ) ) |
184 |
|
sqdiv |
⊢ ( ( 𝐸 ∈ ℂ ∧ ( √ ‘ ( ♯ ‘ 𝑋 ) ) ∈ ℂ ∧ ( √ ‘ ( ♯ ‘ 𝑋 ) ) ≠ 0 ) → ( ( 𝐸 / ( √ ‘ ( ♯ ‘ 𝑋 ) ) ) ↑ 2 ) = ( ( 𝐸 ↑ 2 ) / ( ( √ ‘ ( ♯ ‘ 𝑋 ) ) ↑ 2 ) ) ) |
185 |
150 151 153 184
|
syl3anc |
⊢ ( 𝜑 → ( ( 𝐸 / ( √ ‘ ( ♯ ‘ 𝑋 ) ) ) ↑ 2 ) = ( ( 𝐸 ↑ 2 ) / ( ( √ ‘ ( ♯ ‘ 𝑋 ) ) ↑ 2 ) ) ) |
186 |
95
|
recnd |
⊢ ( 𝜑 → ( ♯ ‘ 𝑋 ) ∈ ℂ ) |
187 |
|
sqrtth |
⊢ ( ( ♯ ‘ 𝑋 ) ∈ ℂ → ( ( √ ‘ ( ♯ ‘ 𝑋 ) ) ↑ 2 ) = ( ♯ ‘ 𝑋 ) ) |
188 |
186 187
|
syl |
⊢ ( 𝜑 → ( ( √ ‘ ( ♯ ‘ 𝑋 ) ) ↑ 2 ) = ( ♯ ‘ 𝑋 ) ) |
189 |
188
|
oveq2d |
⊢ ( 𝜑 → ( ( 𝐸 ↑ 2 ) / ( ( √ ‘ ( ♯ ‘ 𝑋 ) ) ↑ 2 ) ) = ( ( 𝐸 ↑ 2 ) / ( ♯ ‘ 𝑋 ) ) ) |
190 |
185 189
|
eqtrd |
⊢ ( 𝜑 → ( ( 𝐸 / ( √ ‘ ( ♯ ‘ 𝑋 ) ) ) ↑ 2 ) = ( ( 𝐸 ↑ 2 ) / ( ♯ ‘ 𝑋 ) ) ) |
191 |
190
|
oveq2d |
⊢ ( 𝜑 → ( ( ♯ ‘ 𝑋 ) · ( ( 𝐸 / ( √ ‘ ( ♯ ‘ 𝑋 ) ) ) ↑ 2 ) ) = ( ( ♯ ‘ 𝑋 ) · ( ( 𝐸 ↑ 2 ) / ( ♯ ‘ 𝑋 ) ) ) ) |
192 |
150
|
sqcld |
⊢ ( 𝜑 → ( 𝐸 ↑ 2 ) ∈ ℂ ) |
193 |
165 96
|
gtned |
⊢ ( 𝜑 → ( ♯ ‘ 𝑋 ) ≠ 0 ) |
194 |
192 186 193
|
divcan2d |
⊢ ( 𝜑 → ( ( ♯ ‘ 𝑋 ) · ( ( 𝐸 ↑ 2 ) / ( ♯ ‘ 𝑋 ) ) ) = ( 𝐸 ↑ 2 ) ) |
195 |
183 191 194
|
3eqtrd |
⊢ ( 𝜑 → Σ 𝑖 ∈ 𝑋 ( ( 𝐸 / ( √ ‘ ( ♯ ‘ 𝑋 ) ) ) ↑ 2 ) = ( 𝐸 ↑ 2 ) ) |
196 |
195
|
fveq2d |
⊢ ( 𝜑 → ( √ ‘ Σ 𝑖 ∈ 𝑋 ( ( 𝐸 / ( √ ‘ ( ♯ ‘ 𝑋 ) ) ) ↑ 2 ) ) = ( √ ‘ ( 𝐸 ↑ 2 ) ) ) |
197 |
165 81 167
|
ltled |
⊢ ( 𝜑 → 0 ≤ 𝐸 ) |
198 |
|
sqrtsq |
⊢ ( ( 𝐸 ∈ ℝ ∧ 0 ≤ 𝐸 ) → ( √ ‘ ( 𝐸 ↑ 2 ) ) = 𝐸 ) |
199 |
81 197 198
|
syl2anc |
⊢ ( 𝜑 → ( √ ‘ ( 𝐸 ↑ 2 ) ) = 𝐸 ) |
200 |
|
eqidd |
⊢ ( 𝜑 → 𝐸 = 𝐸 ) |
201 |
196 199 200
|
3eqtrd |
⊢ ( 𝜑 → ( √ ‘ Σ 𝑖 ∈ 𝑋 ( ( 𝐸 / ( √ ‘ ( ♯ ‘ 𝑋 ) ) ) ↑ 2 ) ) = 𝐸 ) |
202 |
180 201
|
breqtrd |
⊢ ( 𝜑 → ( √ ‘ Σ 𝑖 ∈ 𝑋 ( ( ( 𝐷 ‘ 𝑖 ) − ( 𝐶 ‘ 𝑖 ) ) ↑ 2 ) ) < 𝐸 ) |
203 |
202
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ X 𝑖 ∈ 𝑋 ( ( 𝐶 ‘ 𝑖 ) [,) ( 𝐷 ‘ 𝑖 ) ) ) → ( √ ‘ Σ 𝑖 ∈ 𝑋 ( ( ( 𝐷 ‘ 𝑖 ) − ( 𝐶 ‘ 𝑖 ) ) ↑ 2 ) ) < 𝐸 ) |
204 |
73 80 82 133 203
|
lttrd |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ X 𝑖 ∈ 𝑋 ( ( 𝐶 ‘ 𝑖 ) [,) ( 𝐷 ‘ 𝑖 ) ) ) → ( 𝑌 ( dist ‘ ( ℝ^ ‘ 𝑋 ) ) 𝑓 ) < 𝐸 ) |
205 |
|
eqid |
⊢ ( dist ‘ ( ℝ^ ‘ 𝑋 ) ) = ( dist ‘ ( ℝ^ ‘ 𝑋 ) ) |
206 |
205
|
rrxmetfi |
⊢ ( 𝑋 ∈ Fin → ( dist ‘ ( ℝ^ ‘ 𝑋 ) ) ∈ ( Met ‘ ( ℝ ↑m 𝑋 ) ) ) |
207 |
|
metxmet |
⊢ ( ( dist ‘ ( ℝ^ ‘ 𝑋 ) ) ∈ ( Met ‘ ( ℝ ↑m 𝑋 ) ) → ( dist ‘ ( ℝ^ ‘ 𝑋 ) ) ∈ ( ∞Met ‘ ( ℝ ↑m 𝑋 ) ) ) |
208 |
2 206 207
|
3syl |
⊢ ( 𝜑 → ( dist ‘ ( ℝ^ ‘ 𝑋 ) ) ∈ ( ∞Met ‘ ( ℝ ↑m 𝑋 ) ) ) |
209 |
208
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ X 𝑖 ∈ 𝑋 ( ( 𝐶 ‘ 𝑖 ) [,) ( 𝐷 ‘ 𝑖 ) ) ) → ( dist ‘ ( ℝ^ ‘ 𝑋 ) ) ∈ ( ∞Met ‘ ( ℝ ↑m 𝑋 ) ) ) |
210 |
82
|
rexrd |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ X 𝑖 ∈ 𝑋 ( ( 𝐶 ‘ 𝑖 ) [,) ( 𝐷 ‘ 𝑖 ) ) ) → 𝐸 ∈ ℝ* ) |
211 |
31 11
|
eleqtrdi |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ X 𝑖 ∈ 𝑋 ( ( 𝐶 ‘ 𝑖 ) [,) ( 𝐷 ‘ 𝑖 ) ) ) → 𝑓 ∈ ( ℝ ↑m 𝑋 ) ) |
212 |
|
elbl2 |
⊢ ( ( ( ( dist ‘ ( ℝ^ ‘ 𝑋 ) ) ∈ ( ∞Met ‘ ( ℝ ↑m 𝑋 ) ) ∧ 𝐸 ∈ ℝ* ) ∧ ( 𝑌 ∈ ( ℝ ↑m 𝑋 ) ∧ 𝑓 ∈ ( ℝ ↑m 𝑋 ) ) ) → ( 𝑓 ∈ ( 𝑌 ( ball ‘ ( dist ‘ ( ℝ^ ‘ 𝑋 ) ) ) 𝐸 ) ↔ ( 𝑌 ( dist ‘ ( ℝ^ ‘ 𝑋 ) ) 𝑓 ) < 𝐸 ) ) |
213 |
209 210 24 211 212
|
syl22anc |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ X 𝑖 ∈ 𝑋 ( ( 𝐶 ‘ 𝑖 ) [,) ( 𝐷 ‘ 𝑖 ) ) ) → ( 𝑓 ∈ ( 𝑌 ( ball ‘ ( dist ‘ ( ℝ^ ‘ 𝑋 ) ) ) 𝐸 ) ↔ ( 𝑌 ( dist ‘ ( ℝ^ ‘ 𝑋 ) ) 𝑓 ) < 𝐸 ) ) |
214 |
204 213
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ X 𝑖 ∈ 𝑋 ( ( 𝐶 ‘ 𝑖 ) [,) ( 𝐷 ‘ 𝑖 ) ) ) → 𝑓 ∈ ( 𝑌 ( ball ‘ ( dist ‘ ( ℝ^ ‘ 𝑋 ) ) ) 𝐸 ) ) |
215 |
214
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑓 ∈ X 𝑖 ∈ 𝑋 ( ( 𝐶 ‘ 𝑖 ) [,) ( 𝐷 ‘ 𝑖 ) ) 𝑓 ∈ ( 𝑌 ( ball ‘ ( dist ‘ ( ℝ^ ‘ 𝑋 ) ) ) 𝐸 ) ) |
216 |
|
dfss3 |
⊢ ( X 𝑖 ∈ 𝑋 ( ( 𝐶 ‘ 𝑖 ) [,) ( 𝐷 ‘ 𝑖 ) ) ⊆ ( 𝑌 ( ball ‘ ( dist ‘ ( ℝ^ ‘ 𝑋 ) ) ) 𝐸 ) ↔ ∀ 𝑓 ∈ X 𝑖 ∈ 𝑋 ( ( 𝐶 ‘ 𝑖 ) [,) ( 𝐷 ‘ 𝑖 ) ) 𝑓 ∈ ( 𝑌 ( ball ‘ ( dist ‘ ( ℝ^ ‘ 𝑋 ) ) ) 𝐸 ) ) |
217 |
215 216
|
sylibr |
⊢ ( 𝜑 → X 𝑖 ∈ 𝑋 ( ( 𝐶 ‘ 𝑖 ) [,) ( 𝐷 ‘ 𝑖 ) ) ⊆ ( 𝑌 ( ball ‘ ( dist ‘ ( ℝ^ ‘ 𝑋 ) ) ) 𝐸 ) ) |