| Step |
Hyp |
Ref |
Expression |
| 1 |
|
hoiqssbllem2.i |
⊢ Ⅎ 𝑖 𝜑 |
| 2 |
|
hoiqssbllem2.x |
⊢ ( 𝜑 → 𝑋 ∈ Fin ) |
| 3 |
|
hoiqssbllem2.n |
⊢ ( 𝜑 → 𝑋 ≠ ∅ ) |
| 4 |
|
hoiqssbllem2.y |
⊢ ( 𝜑 → 𝑌 ∈ ( ℝ ↑m 𝑋 ) ) |
| 5 |
|
hoiqssbllem2.c |
⊢ ( 𝜑 → 𝐶 : 𝑋 ⟶ ℝ ) |
| 6 |
|
hoiqssbllem2.d |
⊢ ( 𝜑 → 𝐷 : 𝑋 ⟶ ℝ ) |
| 7 |
|
hoiqssbllem2.e |
⊢ ( 𝜑 → 𝐸 ∈ ℝ+ ) |
| 8 |
|
hoiqssbllem2.l |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑋 ) → ( 𝐶 ‘ 𝑖 ) ∈ ( ( ( 𝑌 ‘ 𝑖 ) − ( 𝐸 / ( 2 · ( √ ‘ ( ♯ ‘ 𝑋 ) ) ) ) ) (,) ( 𝑌 ‘ 𝑖 ) ) ) |
| 9 |
|
hoiqssbllem2.r |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑋 ) → ( 𝐷 ‘ 𝑖 ) ∈ ( ( 𝑌 ‘ 𝑖 ) (,) ( ( 𝑌 ‘ 𝑖 ) + ( 𝐸 / ( 2 · ( √ ‘ ( ♯ ‘ 𝑋 ) ) ) ) ) ) ) |
| 10 |
|
eqid |
⊢ ( ℝ^ ‘ 𝑋 ) = ( ℝ^ ‘ 𝑋 ) |
| 11 |
|
eqid |
⊢ ( ℝ ↑m 𝑋 ) = ( ℝ ↑m 𝑋 ) |
| 12 |
10 11
|
rrxdsfi |
⊢ ( 𝑋 ∈ Fin → ( dist ‘ ( ℝ^ ‘ 𝑋 ) ) = ( 𝑔 ∈ ( ℝ ↑m 𝑋 ) , ℎ ∈ ( ℝ ↑m 𝑋 ) ↦ ( √ ‘ Σ 𝑖 ∈ 𝑋 ( ( ( 𝑔 ‘ 𝑖 ) − ( ℎ ‘ 𝑖 ) ) ↑ 2 ) ) ) ) |
| 13 |
2 12
|
syl |
⊢ ( 𝜑 → ( dist ‘ ( ℝ^ ‘ 𝑋 ) ) = ( 𝑔 ∈ ( ℝ ↑m 𝑋 ) , ℎ ∈ ( ℝ ↑m 𝑋 ) ↦ ( √ ‘ Σ 𝑖 ∈ 𝑋 ( ( ( 𝑔 ‘ 𝑖 ) − ( ℎ ‘ 𝑖 ) ) ↑ 2 ) ) ) ) |
| 14 |
13
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ X 𝑖 ∈ 𝑋 ( ( 𝐶 ‘ 𝑖 ) [,) ( 𝐷 ‘ 𝑖 ) ) ) → ( dist ‘ ( ℝ^ ‘ 𝑋 ) ) = ( 𝑔 ∈ ( ℝ ↑m 𝑋 ) , ℎ ∈ ( ℝ ↑m 𝑋 ) ↦ ( √ ‘ Σ 𝑖 ∈ 𝑋 ( ( ( 𝑔 ‘ 𝑖 ) − ( ℎ ‘ 𝑖 ) ) ↑ 2 ) ) ) ) |
| 15 |
|
fveq1 |
⊢ ( 𝑔 = 𝑌 → ( 𝑔 ‘ 𝑖 ) = ( 𝑌 ‘ 𝑖 ) ) |
| 16 |
15
|
adantr |
⊢ ( ( 𝑔 = 𝑌 ∧ ℎ = 𝑓 ) → ( 𝑔 ‘ 𝑖 ) = ( 𝑌 ‘ 𝑖 ) ) |
| 17 |
|
fveq1 |
⊢ ( ℎ = 𝑓 → ( ℎ ‘ 𝑖 ) = ( 𝑓 ‘ 𝑖 ) ) |
| 18 |
17
|
adantl |
⊢ ( ( 𝑔 = 𝑌 ∧ ℎ = 𝑓 ) → ( ℎ ‘ 𝑖 ) = ( 𝑓 ‘ 𝑖 ) ) |
| 19 |
16 18
|
oveq12d |
⊢ ( ( 𝑔 = 𝑌 ∧ ℎ = 𝑓 ) → ( ( 𝑔 ‘ 𝑖 ) − ( ℎ ‘ 𝑖 ) ) = ( ( 𝑌 ‘ 𝑖 ) − ( 𝑓 ‘ 𝑖 ) ) ) |
| 20 |
19
|
oveq1d |
⊢ ( ( 𝑔 = 𝑌 ∧ ℎ = 𝑓 ) → ( ( ( 𝑔 ‘ 𝑖 ) − ( ℎ ‘ 𝑖 ) ) ↑ 2 ) = ( ( ( 𝑌 ‘ 𝑖 ) − ( 𝑓 ‘ 𝑖 ) ) ↑ 2 ) ) |
| 21 |
20
|
sumeq2sdv |
⊢ ( ( 𝑔 = 𝑌 ∧ ℎ = 𝑓 ) → Σ 𝑖 ∈ 𝑋 ( ( ( 𝑔 ‘ 𝑖 ) − ( ℎ ‘ 𝑖 ) ) ↑ 2 ) = Σ 𝑖 ∈ 𝑋 ( ( ( 𝑌 ‘ 𝑖 ) − ( 𝑓 ‘ 𝑖 ) ) ↑ 2 ) ) |
| 22 |
21
|
fveq2d |
⊢ ( ( 𝑔 = 𝑌 ∧ ℎ = 𝑓 ) → ( √ ‘ Σ 𝑖 ∈ 𝑋 ( ( ( 𝑔 ‘ 𝑖 ) − ( ℎ ‘ 𝑖 ) ) ↑ 2 ) ) = ( √ ‘ Σ 𝑖 ∈ 𝑋 ( ( ( 𝑌 ‘ 𝑖 ) − ( 𝑓 ‘ 𝑖 ) ) ↑ 2 ) ) ) |
| 23 |
22
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ X 𝑖 ∈ 𝑋 ( ( 𝐶 ‘ 𝑖 ) [,) ( 𝐷 ‘ 𝑖 ) ) ) ∧ ( 𝑔 = 𝑌 ∧ ℎ = 𝑓 ) ) → ( √ ‘ Σ 𝑖 ∈ 𝑋 ( ( ( 𝑔 ‘ 𝑖 ) − ( ℎ ‘ 𝑖 ) ) ↑ 2 ) ) = ( √ ‘ Σ 𝑖 ∈ 𝑋 ( ( ( 𝑌 ‘ 𝑖 ) − ( 𝑓 ‘ 𝑖 ) ) ↑ 2 ) ) ) |
| 24 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ X 𝑖 ∈ 𝑋 ( ( 𝐶 ‘ 𝑖 ) [,) ( 𝐷 ‘ 𝑖 ) ) ) → 𝑌 ∈ ( ℝ ↑m 𝑋 ) ) |
| 25 |
5
|
ffvelcdmda |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑋 ) → ( 𝐶 ‘ 𝑖 ) ∈ ℝ ) |
| 26 |
6
|
ffvelcdmda |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑋 ) → ( 𝐷 ‘ 𝑖 ) ∈ ℝ ) |
| 27 |
26
|
rexrd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑋 ) → ( 𝐷 ‘ 𝑖 ) ∈ ℝ* ) |
| 28 |
1 25 27
|
hoissrrn2 |
⊢ ( 𝜑 → X 𝑖 ∈ 𝑋 ( ( 𝐶 ‘ 𝑖 ) [,) ( 𝐷 ‘ 𝑖 ) ) ⊆ ( ℝ ↑m 𝑋 ) ) |
| 29 |
28
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ X 𝑖 ∈ 𝑋 ( ( 𝐶 ‘ 𝑖 ) [,) ( 𝐷 ‘ 𝑖 ) ) ) → X 𝑖 ∈ 𝑋 ( ( 𝐶 ‘ 𝑖 ) [,) ( 𝐷 ‘ 𝑖 ) ) ⊆ ( ℝ ↑m 𝑋 ) ) |
| 30 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ X 𝑖 ∈ 𝑋 ( ( 𝐶 ‘ 𝑖 ) [,) ( 𝐷 ‘ 𝑖 ) ) ) → 𝑓 ∈ X 𝑖 ∈ 𝑋 ( ( 𝐶 ‘ 𝑖 ) [,) ( 𝐷 ‘ 𝑖 ) ) ) |
| 31 |
29 30
|
sseldd |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ X 𝑖 ∈ 𝑋 ( ( 𝐶 ‘ 𝑖 ) [,) ( 𝐷 ‘ 𝑖 ) ) ) → 𝑓 ∈ ( ℝ ↑m 𝑋 ) ) |
| 32 |
|
fvexd |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ X 𝑖 ∈ 𝑋 ( ( 𝐶 ‘ 𝑖 ) [,) ( 𝐷 ‘ 𝑖 ) ) ) → ( √ ‘ Σ 𝑖 ∈ 𝑋 ( ( ( 𝑌 ‘ 𝑖 ) − ( 𝑓 ‘ 𝑖 ) ) ↑ 2 ) ) ∈ V ) |
| 33 |
14 23 24 31 32
|
ovmpod |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ X 𝑖 ∈ 𝑋 ( ( 𝐶 ‘ 𝑖 ) [,) ( 𝐷 ‘ 𝑖 ) ) ) → ( 𝑌 ( dist ‘ ( ℝ^ ‘ 𝑋 ) ) 𝑓 ) = ( √ ‘ Σ 𝑖 ∈ 𝑋 ( ( ( 𝑌 ‘ 𝑖 ) − ( 𝑓 ‘ 𝑖 ) ) ↑ 2 ) ) ) |
| 34 |
|
nfcv |
⊢ Ⅎ 𝑖 𝑓 |
| 35 |
|
nfixp1 |
⊢ Ⅎ 𝑖 X 𝑖 ∈ 𝑋 ( ( 𝐶 ‘ 𝑖 ) [,) ( 𝐷 ‘ 𝑖 ) ) |
| 36 |
34 35
|
nfel |
⊢ Ⅎ 𝑖 𝑓 ∈ X 𝑖 ∈ 𝑋 ( ( 𝐶 ‘ 𝑖 ) [,) ( 𝐷 ‘ 𝑖 ) ) |
| 37 |
1 36
|
nfan |
⊢ Ⅎ 𝑖 ( 𝜑 ∧ 𝑓 ∈ X 𝑖 ∈ 𝑋 ( ( 𝐶 ‘ 𝑖 ) [,) ( 𝐷 ‘ 𝑖 ) ) ) |
| 38 |
|
simpl |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ X 𝑖 ∈ 𝑋 ( ( 𝐶 ‘ 𝑖 ) [,) ( 𝐷 ‘ 𝑖 ) ) ) → 𝜑 ) |
| 39 |
38 2
|
syl |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ X 𝑖 ∈ 𝑋 ( ( 𝐶 ‘ 𝑖 ) [,) ( 𝐷 ‘ 𝑖 ) ) ) → 𝑋 ∈ Fin ) |
| 40 |
|
elmapi |
⊢ ( 𝑌 ∈ ( ℝ ↑m 𝑋 ) → 𝑌 : 𝑋 ⟶ ℝ ) |
| 41 |
4 40
|
syl |
⊢ ( 𝜑 → 𝑌 : 𝑋 ⟶ ℝ ) |
| 42 |
41
|
ffvelcdmda |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑋 ) → ( 𝑌 ‘ 𝑖 ) ∈ ℝ ) |
| 43 |
38 42
|
sylan |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ X 𝑖 ∈ 𝑋 ( ( 𝐶 ‘ 𝑖 ) [,) ( 𝐷 ‘ 𝑖 ) ) ) ∧ 𝑖 ∈ 𝑋 ) → ( 𝑌 ‘ 𝑖 ) ∈ ℝ ) |
| 44 |
|
icossre |
⊢ ( ( ( 𝐶 ‘ 𝑖 ) ∈ ℝ ∧ ( 𝐷 ‘ 𝑖 ) ∈ ℝ* ) → ( ( 𝐶 ‘ 𝑖 ) [,) ( 𝐷 ‘ 𝑖 ) ) ⊆ ℝ ) |
| 45 |
25 27 44
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑋 ) → ( ( 𝐶 ‘ 𝑖 ) [,) ( 𝐷 ‘ 𝑖 ) ) ⊆ ℝ ) |
| 46 |
45
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ X 𝑖 ∈ 𝑋 ( ( 𝐶 ‘ 𝑖 ) [,) ( 𝐷 ‘ 𝑖 ) ) ) ∧ 𝑖 ∈ 𝑋 ) → ( ( 𝐶 ‘ 𝑖 ) [,) ( 𝐷 ‘ 𝑖 ) ) ⊆ ℝ ) |
| 47 |
|
fvixp2 |
⊢ ( ( 𝑓 ∈ X 𝑖 ∈ 𝑋 ( ( 𝐶 ‘ 𝑖 ) [,) ( 𝐷 ‘ 𝑖 ) ) ∧ 𝑖 ∈ 𝑋 ) → ( 𝑓 ‘ 𝑖 ) ∈ ( ( 𝐶 ‘ 𝑖 ) [,) ( 𝐷 ‘ 𝑖 ) ) ) |
| 48 |
47
|
adantll |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ X 𝑖 ∈ 𝑋 ( ( 𝐶 ‘ 𝑖 ) [,) ( 𝐷 ‘ 𝑖 ) ) ) ∧ 𝑖 ∈ 𝑋 ) → ( 𝑓 ‘ 𝑖 ) ∈ ( ( 𝐶 ‘ 𝑖 ) [,) ( 𝐷 ‘ 𝑖 ) ) ) |
| 49 |
46 48
|
sseldd |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ X 𝑖 ∈ 𝑋 ( ( 𝐶 ‘ 𝑖 ) [,) ( 𝐷 ‘ 𝑖 ) ) ) ∧ 𝑖 ∈ 𝑋 ) → ( 𝑓 ‘ 𝑖 ) ∈ ℝ ) |
| 50 |
43 49
|
resubcld |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ X 𝑖 ∈ 𝑋 ( ( 𝐶 ‘ 𝑖 ) [,) ( 𝐷 ‘ 𝑖 ) ) ) ∧ 𝑖 ∈ 𝑋 ) → ( ( 𝑌 ‘ 𝑖 ) − ( 𝑓 ‘ 𝑖 ) ) ∈ ℝ ) |
| 51 |
|
2nn0 |
⊢ 2 ∈ ℕ0 |
| 52 |
51
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ X 𝑖 ∈ 𝑋 ( ( 𝐶 ‘ 𝑖 ) [,) ( 𝐷 ‘ 𝑖 ) ) ) ∧ 𝑖 ∈ 𝑋 ) → 2 ∈ ℕ0 ) |
| 53 |
50 52
|
reexpcld |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ X 𝑖 ∈ 𝑋 ( ( 𝐶 ‘ 𝑖 ) [,) ( 𝐷 ‘ 𝑖 ) ) ) ∧ 𝑖 ∈ 𝑋 ) → ( ( ( 𝑌 ‘ 𝑖 ) − ( 𝑓 ‘ 𝑖 ) ) ↑ 2 ) ∈ ℝ ) |
| 54 |
37 39 53
|
fsumreclf |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ X 𝑖 ∈ 𝑋 ( ( 𝐶 ‘ 𝑖 ) [,) ( 𝐷 ‘ 𝑖 ) ) ) → Σ 𝑖 ∈ 𝑋 ( ( ( 𝑌 ‘ 𝑖 ) − ( 𝑓 ‘ 𝑖 ) ) ↑ 2 ) ∈ ℝ ) |
| 55 |
|
fveq2 |
⊢ ( 𝑖 = 𝑗 → ( 𝐶 ‘ 𝑖 ) = ( 𝐶 ‘ 𝑗 ) ) |
| 56 |
|
fveq2 |
⊢ ( 𝑖 = 𝑗 → ( 𝐷 ‘ 𝑖 ) = ( 𝐷 ‘ 𝑗 ) ) |
| 57 |
55 56
|
oveq12d |
⊢ ( 𝑖 = 𝑗 → ( ( 𝐶 ‘ 𝑖 ) [,) ( 𝐷 ‘ 𝑖 ) ) = ( ( 𝐶 ‘ 𝑗 ) [,) ( 𝐷 ‘ 𝑗 ) ) ) |
| 58 |
57
|
cbvixpv |
⊢ X 𝑖 ∈ 𝑋 ( ( 𝐶 ‘ 𝑖 ) [,) ( 𝐷 ‘ 𝑖 ) ) = X 𝑗 ∈ 𝑋 ( ( 𝐶 ‘ 𝑗 ) [,) ( 𝐷 ‘ 𝑗 ) ) |
| 59 |
58
|
eleq2i |
⊢ ( 𝑓 ∈ X 𝑖 ∈ 𝑋 ( ( 𝐶 ‘ 𝑖 ) [,) ( 𝐷 ‘ 𝑖 ) ) ↔ 𝑓 ∈ X 𝑗 ∈ 𝑋 ( ( 𝐶 ‘ 𝑗 ) [,) ( 𝐷 ‘ 𝑗 ) ) ) |
| 60 |
59
|
biimpi |
⊢ ( 𝑓 ∈ X 𝑖 ∈ 𝑋 ( ( 𝐶 ‘ 𝑖 ) [,) ( 𝐷 ‘ 𝑖 ) ) → 𝑓 ∈ X 𝑗 ∈ 𝑋 ( ( 𝐶 ‘ 𝑗 ) [,) ( 𝐷 ‘ 𝑗 ) ) ) |
| 61 |
60
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ X 𝑖 ∈ 𝑋 ( ( 𝐶 ‘ 𝑖 ) [,) ( 𝐷 ‘ 𝑖 ) ) ) → 𝑓 ∈ X 𝑗 ∈ 𝑋 ( ( 𝐶 ‘ 𝑗 ) [,) ( 𝐷 ‘ 𝑗 ) ) ) |
| 62 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ X 𝑗 ∈ 𝑋 ( ( 𝐶 ‘ 𝑗 ) [,) ( 𝐷 ‘ 𝑗 ) ) ) → 𝑋 ∈ Fin ) |
| 63 |
|
simpll |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ X 𝑗 ∈ 𝑋 ( ( 𝐶 ‘ 𝑗 ) [,) ( 𝐷 ‘ 𝑗 ) ) ) ∧ 𝑖 ∈ 𝑋 ) → 𝜑 ) |
| 64 |
59
|
biimpri |
⊢ ( 𝑓 ∈ X 𝑗 ∈ 𝑋 ( ( 𝐶 ‘ 𝑗 ) [,) ( 𝐷 ‘ 𝑗 ) ) → 𝑓 ∈ X 𝑖 ∈ 𝑋 ( ( 𝐶 ‘ 𝑖 ) [,) ( 𝐷 ‘ 𝑖 ) ) ) |
| 65 |
64
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ X 𝑗 ∈ 𝑋 ( ( 𝐶 ‘ 𝑗 ) [,) ( 𝐷 ‘ 𝑗 ) ) ) ∧ 𝑖 ∈ 𝑋 ) → 𝑓 ∈ X 𝑖 ∈ 𝑋 ( ( 𝐶 ‘ 𝑖 ) [,) ( 𝐷 ‘ 𝑖 ) ) ) |
| 66 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ X 𝑗 ∈ 𝑋 ( ( 𝐶 ‘ 𝑗 ) [,) ( 𝐷 ‘ 𝑗 ) ) ) ∧ 𝑖 ∈ 𝑋 ) → 𝑖 ∈ 𝑋 ) |
| 67 |
63 65 66 53
|
syl21anc |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ X 𝑗 ∈ 𝑋 ( ( 𝐶 ‘ 𝑗 ) [,) ( 𝐷 ‘ 𝑗 ) ) ) ∧ 𝑖 ∈ 𝑋 ) → ( ( ( 𝑌 ‘ 𝑖 ) − ( 𝑓 ‘ 𝑖 ) ) ↑ 2 ) ∈ ℝ ) |
| 68 |
50
|
sqge0d |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ X 𝑖 ∈ 𝑋 ( ( 𝐶 ‘ 𝑖 ) [,) ( 𝐷 ‘ 𝑖 ) ) ) ∧ 𝑖 ∈ 𝑋 ) → 0 ≤ ( ( ( 𝑌 ‘ 𝑖 ) − ( 𝑓 ‘ 𝑖 ) ) ↑ 2 ) ) |
| 69 |
63 65 66 68
|
syl21anc |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ X 𝑗 ∈ 𝑋 ( ( 𝐶 ‘ 𝑗 ) [,) ( 𝐷 ‘ 𝑗 ) ) ) ∧ 𝑖 ∈ 𝑋 ) → 0 ≤ ( ( ( 𝑌 ‘ 𝑖 ) − ( 𝑓 ‘ 𝑖 ) ) ↑ 2 ) ) |
| 70 |
62 67 69
|
fsumge0 |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ X 𝑗 ∈ 𝑋 ( ( 𝐶 ‘ 𝑗 ) [,) ( 𝐷 ‘ 𝑗 ) ) ) → 0 ≤ Σ 𝑖 ∈ 𝑋 ( ( ( 𝑌 ‘ 𝑖 ) − ( 𝑓 ‘ 𝑖 ) ) ↑ 2 ) ) |
| 71 |
38 61 70
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ X 𝑖 ∈ 𝑋 ( ( 𝐶 ‘ 𝑖 ) [,) ( 𝐷 ‘ 𝑖 ) ) ) → 0 ≤ Σ 𝑖 ∈ 𝑋 ( ( ( 𝑌 ‘ 𝑖 ) − ( 𝑓 ‘ 𝑖 ) ) ↑ 2 ) ) |
| 72 |
54 71
|
resqrtcld |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ X 𝑖 ∈ 𝑋 ( ( 𝐶 ‘ 𝑖 ) [,) ( 𝐷 ‘ 𝑖 ) ) ) → ( √ ‘ Σ 𝑖 ∈ 𝑋 ( ( ( 𝑌 ‘ 𝑖 ) − ( 𝑓 ‘ 𝑖 ) ) ↑ 2 ) ) ∈ ℝ ) |
| 73 |
33 72
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ X 𝑖 ∈ 𝑋 ( ( 𝐶 ‘ 𝑖 ) [,) ( 𝐷 ‘ 𝑖 ) ) ) → ( 𝑌 ( dist ‘ ( ℝ^ ‘ 𝑋 ) ) 𝑓 ) ∈ ℝ ) |
| 74 |
26 25
|
resubcld |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑋 ) → ( ( 𝐷 ‘ 𝑖 ) − ( 𝐶 ‘ 𝑖 ) ) ∈ ℝ ) |
| 75 |
74
|
resqcld |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑋 ) → ( ( ( 𝐷 ‘ 𝑖 ) − ( 𝐶 ‘ 𝑖 ) ) ↑ 2 ) ∈ ℝ ) |
| 76 |
2 75
|
fsumrecl |
⊢ ( 𝜑 → Σ 𝑖 ∈ 𝑋 ( ( ( 𝐷 ‘ 𝑖 ) − ( 𝐶 ‘ 𝑖 ) ) ↑ 2 ) ∈ ℝ ) |
| 77 |
74
|
sqge0d |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑋 ) → 0 ≤ ( ( ( 𝐷 ‘ 𝑖 ) − ( 𝐶 ‘ 𝑖 ) ) ↑ 2 ) ) |
| 78 |
2 75 77
|
fsumge0 |
⊢ ( 𝜑 → 0 ≤ Σ 𝑖 ∈ 𝑋 ( ( ( 𝐷 ‘ 𝑖 ) − ( 𝐶 ‘ 𝑖 ) ) ↑ 2 ) ) |
| 79 |
76 78
|
resqrtcld |
⊢ ( 𝜑 → ( √ ‘ Σ 𝑖 ∈ 𝑋 ( ( ( 𝐷 ‘ 𝑖 ) − ( 𝐶 ‘ 𝑖 ) ) ↑ 2 ) ) ∈ ℝ ) |
| 80 |
79
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ X 𝑖 ∈ 𝑋 ( ( 𝐶 ‘ 𝑖 ) [,) ( 𝐷 ‘ 𝑖 ) ) ) → ( √ ‘ Σ 𝑖 ∈ 𝑋 ( ( ( 𝐷 ‘ 𝑖 ) − ( 𝐶 ‘ 𝑖 ) ) ↑ 2 ) ) ∈ ℝ ) |
| 81 |
7
|
rpred |
⊢ ( 𝜑 → 𝐸 ∈ ℝ ) |
| 82 |
81
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ X 𝑖 ∈ 𝑋 ( ( 𝐶 ‘ 𝑖 ) [,) ( 𝐷 ‘ 𝑖 ) ) ) → 𝐸 ∈ ℝ ) |
| 83 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ X 𝑗 ∈ 𝑋 ( ( 𝐶 ‘ 𝑗 ) [,) ( 𝐷 ‘ 𝑗 ) ) ) → 𝑋 ≠ ∅ ) |
| 84 |
75
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ X 𝑗 ∈ 𝑋 ( ( 𝐶 ‘ 𝑗 ) [,) ( 𝐷 ‘ 𝑗 ) ) ) ∧ 𝑖 ∈ 𝑋 ) → ( ( ( 𝐷 ‘ 𝑖 ) − ( 𝐶 ‘ 𝑖 ) ) ↑ 2 ) ∈ ℝ ) |
| 85 |
38 26
|
sylan |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ X 𝑖 ∈ 𝑋 ( ( 𝐶 ‘ 𝑖 ) [,) ( 𝐷 ‘ 𝑖 ) ) ) ∧ 𝑖 ∈ 𝑋 ) → ( 𝐷 ‘ 𝑖 ) ∈ ℝ ) |
| 86 |
38 25
|
sylan |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ X 𝑖 ∈ 𝑋 ( ( 𝐶 ‘ 𝑖 ) [,) ( 𝐷 ‘ 𝑖 ) ) ) ∧ 𝑖 ∈ 𝑋 ) → ( 𝐶 ‘ 𝑖 ) ∈ ℝ ) |
| 87 |
85 86
|
resubcld |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ X 𝑖 ∈ 𝑋 ( ( 𝐶 ‘ 𝑖 ) [,) ( 𝐷 ‘ 𝑖 ) ) ) ∧ 𝑖 ∈ 𝑋 ) → ( ( 𝐷 ‘ 𝑖 ) − ( 𝐶 ‘ 𝑖 ) ) ∈ ℝ ) |
| 88 |
25
|
rexrd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑋 ) → ( 𝐶 ‘ 𝑖 ) ∈ ℝ* ) |
| 89 |
42
|
rexrd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑋 ) → ( 𝑌 ‘ 𝑖 ) ∈ ℝ* ) |
| 90 |
|
2rp |
⊢ 2 ∈ ℝ+ |
| 91 |
90
|
a1i |
⊢ ( 𝜑 → 2 ∈ ℝ+ ) |
| 92 |
|
hashnncl |
⊢ ( 𝑋 ∈ Fin → ( ( ♯ ‘ 𝑋 ) ∈ ℕ ↔ 𝑋 ≠ ∅ ) ) |
| 93 |
2 92
|
syl |
⊢ ( 𝜑 → ( ( ♯ ‘ 𝑋 ) ∈ ℕ ↔ 𝑋 ≠ ∅ ) ) |
| 94 |
3 93
|
mpbird |
⊢ ( 𝜑 → ( ♯ ‘ 𝑋 ) ∈ ℕ ) |
| 95 |
94
|
nnred |
⊢ ( 𝜑 → ( ♯ ‘ 𝑋 ) ∈ ℝ ) |
| 96 |
94
|
nngt0d |
⊢ ( 𝜑 → 0 < ( ♯ ‘ 𝑋 ) ) |
| 97 |
95 96
|
elrpd |
⊢ ( 𝜑 → ( ♯ ‘ 𝑋 ) ∈ ℝ+ ) |
| 98 |
97
|
rpsqrtcld |
⊢ ( 𝜑 → ( √ ‘ ( ♯ ‘ 𝑋 ) ) ∈ ℝ+ ) |
| 99 |
91 98
|
rpmulcld |
⊢ ( 𝜑 → ( 2 · ( √ ‘ ( ♯ ‘ 𝑋 ) ) ) ∈ ℝ+ ) |
| 100 |
7 99
|
rpdivcld |
⊢ ( 𝜑 → ( 𝐸 / ( 2 · ( √ ‘ ( ♯ ‘ 𝑋 ) ) ) ) ∈ ℝ+ ) |
| 101 |
100
|
rpred |
⊢ ( 𝜑 → ( 𝐸 / ( 2 · ( √ ‘ ( ♯ ‘ 𝑋 ) ) ) ) ∈ ℝ ) |
| 102 |
101
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑋 ) → ( 𝐸 / ( 2 · ( √ ‘ ( ♯ ‘ 𝑋 ) ) ) ) ∈ ℝ ) |
| 103 |
42 102
|
resubcld |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑋 ) → ( ( 𝑌 ‘ 𝑖 ) − ( 𝐸 / ( 2 · ( √ ‘ ( ♯ ‘ 𝑋 ) ) ) ) ) ∈ ℝ ) |
| 104 |
103
|
rexrd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑋 ) → ( ( 𝑌 ‘ 𝑖 ) − ( 𝐸 / ( 2 · ( √ ‘ ( ♯ ‘ 𝑋 ) ) ) ) ) ∈ ℝ* ) |
| 105 |
|
iooltub |
⊢ ( ( ( ( 𝑌 ‘ 𝑖 ) − ( 𝐸 / ( 2 · ( √ ‘ ( ♯ ‘ 𝑋 ) ) ) ) ) ∈ ℝ* ∧ ( 𝑌 ‘ 𝑖 ) ∈ ℝ* ∧ ( 𝐶 ‘ 𝑖 ) ∈ ( ( ( 𝑌 ‘ 𝑖 ) − ( 𝐸 / ( 2 · ( √ ‘ ( ♯ ‘ 𝑋 ) ) ) ) ) (,) ( 𝑌 ‘ 𝑖 ) ) ) → ( 𝐶 ‘ 𝑖 ) < ( 𝑌 ‘ 𝑖 ) ) |
| 106 |
104 89 8 105
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑋 ) → ( 𝐶 ‘ 𝑖 ) < ( 𝑌 ‘ 𝑖 ) ) |
| 107 |
25 42 106
|
ltled |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑋 ) → ( 𝐶 ‘ 𝑖 ) ≤ ( 𝑌 ‘ 𝑖 ) ) |
| 108 |
42 102
|
readdcld |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑋 ) → ( ( 𝑌 ‘ 𝑖 ) + ( 𝐸 / ( 2 · ( √ ‘ ( ♯ ‘ 𝑋 ) ) ) ) ) ∈ ℝ ) |
| 109 |
108
|
rexrd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑋 ) → ( ( 𝑌 ‘ 𝑖 ) + ( 𝐸 / ( 2 · ( √ ‘ ( ♯ ‘ 𝑋 ) ) ) ) ) ∈ ℝ* ) |
| 110 |
|
ioogtlb |
⊢ ( ( ( 𝑌 ‘ 𝑖 ) ∈ ℝ* ∧ ( ( 𝑌 ‘ 𝑖 ) + ( 𝐸 / ( 2 · ( √ ‘ ( ♯ ‘ 𝑋 ) ) ) ) ) ∈ ℝ* ∧ ( 𝐷 ‘ 𝑖 ) ∈ ( ( 𝑌 ‘ 𝑖 ) (,) ( ( 𝑌 ‘ 𝑖 ) + ( 𝐸 / ( 2 · ( √ ‘ ( ♯ ‘ 𝑋 ) ) ) ) ) ) ) → ( 𝑌 ‘ 𝑖 ) < ( 𝐷 ‘ 𝑖 ) ) |
| 111 |
89 109 9 110
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑋 ) → ( 𝑌 ‘ 𝑖 ) < ( 𝐷 ‘ 𝑖 ) ) |
| 112 |
88 27 89 107 111
|
elicod |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑋 ) → ( 𝑌 ‘ 𝑖 ) ∈ ( ( 𝐶 ‘ 𝑖 ) [,) ( 𝐷 ‘ 𝑖 ) ) ) |
| 113 |
38 112
|
sylan |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ X 𝑖 ∈ 𝑋 ( ( 𝐶 ‘ 𝑖 ) [,) ( 𝐷 ‘ 𝑖 ) ) ) ∧ 𝑖 ∈ 𝑋 ) → ( 𝑌 ‘ 𝑖 ) ∈ ( ( 𝐶 ‘ 𝑖 ) [,) ( 𝐷 ‘ 𝑖 ) ) ) |
| 114 |
|
icodiamlt |
⊢ ( ( ( ( 𝐶 ‘ 𝑖 ) ∈ ℝ ∧ ( 𝐷 ‘ 𝑖 ) ∈ ℝ ) ∧ ( ( 𝑌 ‘ 𝑖 ) ∈ ( ( 𝐶 ‘ 𝑖 ) [,) ( 𝐷 ‘ 𝑖 ) ) ∧ ( 𝑓 ‘ 𝑖 ) ∈ ( ( 𝐶 ‘ 𝑖 ) [,) ( 𝐷 ‘ 𝑖 ) ) ) ) → ( abs ‘ ( ( 𝑌 ‘ 𝑖 ) − ( 𝑓 ‘ 𝑖 ) ) ) < ( ( 𝐷 ‘ 𝑖 ) − ( 𝐶 ‘ 𝑖 ) ) ) |
| 115 |
86 85 113 48 114
|
syl22anc |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ X 𝑖 ∈ 𝑋 ( ( 𝐶 ‘ 𝑖 ) [,) ( 𝐷 ‘ 𝑖 ) ) ) ∧ 𝑖 ∈ 𝑋 ) → ( abs ‘ ( ( 𝑌 ‘ 𝑖 ) − ( 𝑓 ‘ 𝑖 ) ) ) < ( ( 𝐷 ‘ 𝑖 ) − ( 𝐶 ‘ 𝑖 ) ) ) |
| 116 |
|
0red |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑋 ) → 0 ∈ ℝ ) |
| 117 |
25 42 26 107 111
|
lelttrd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑋 ) → ( 𝐶 ‘ 𝑖 ) < ( 𝐷 ‘ 𝑖 ) ) |
| 118 |
25 26
|
posdifd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑋 ) → ( ( 𝐶 ‘ 𝑖 ) < ( 𝐷 ‘ 𝑖 ) ↔ 0 < ( ( 𝐷 ‘ 𝑖 ) − ( 𝐶 ‘ 𝑖 ) ) ) ) |
| 119 |
117 118
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑋 ) → 0 < ( ( 𝐷 ‘ 𝑖 ) − ( 𝐶 ‘ 𝑖 ) ) ) |
| 120 |
116 74 119
|
ltled |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑋 ) → 0 ≤ ( ( 𝐷 ‘ 𝑖 ) − ( 𝐶 ‘ 𝑖 ) ) ) |
| 121 |
74 120
|
absidd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑋 ) → ( abs ‘ ( ( 𝐷 ‘ 𝑖 ) − ( 𝐶 ‘ 𝑖 ) ) ) = ( ( 𝐷 ‘ 𝑖 ) − ( 𝐶 ‘ 𝑖 ) ) ) |
| 122 |
121
|
eqcomd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑋 ) → ( ( 𝐷 ‘ 𝑖 ) − ( 𝐶 ‘ 𝑖 ) ) = ( abs ‘ ( ( 𝐷 ‘ 𝑖 ) − ( 𝐶 ‘ 𝑖 ) ) ) ) |
| 123 |
122
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ X 𝑖 ∈ 𝑋 ( ( 𝐶 ‘ 𝑖 ) [,) ( 𝐷 ‘ 𝑖 ) ) ) ∧ 𝑖 ∈ 𝑋 ) → ( ( 𝐷 ‘ 𝑖 ) − ( 𝐶 ‘ 𝑖 ) ) = ( abs ‘ ( ( 𝐷 ‘ 𝑖 ) − ( 𝐶 ‘ 𝑖 ) ) ) ) |
| 124 |
115 123
|
breqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ X 𝑖 ∈ 𝑋 ( ( 𝐶 ‘ 𝑖 ) [,) ( 𝐷 ‘ 𝑖 ) ) ) ∧ 𝑖 ∈ 𝑋 ) → ( abs ‘ ( ( 𝑌 ‘ 𝑖 ) − ( 𝑓 ‘ 𝑖 ) ) ) < ( abs ‘ ( ( 𝐷 ‘ 𝑖 ) − ( 𝐶 ‘ 𝑖 ) ) ) ) |
| 125 |
50 87 124
|
abslt2sqd |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ X 𝑖 ∈ 𝑋 ( ( 𝐶 ‘ 𝑖 ) [,) ( 𝐷 ‘ 𝑖 ) ) ) ∧ 𝑖 ∈ 𝑋 ) → ( ( ( 𝑌 ‘ 𝑖 ) − ( 𝑓 ‘ 𝑖 ) ) ↑ 2 ) < ( ( ( 𝐷 ‘ 𝑖 ) − ( 𝐶 ‘ 𝑖 ) ) ↑ 2 ) ) |
| 126 |
63 65 66 125
|
syl21anc |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ X 𝑗 ∈ 𝑋 ( ( 𝐶 ‘ 𝑗 ) [,) ( 𝐷 ‘ 𝑗 ) ) ) ∧ 𝑖 ∈ 𝑋 ) → ( ( ( 𝑌 ‘ 𝑖 ) − ( 𝑓 ‘ 𝑖 ) ) ↑ 2 ) < ( ( ( 𝐷 ‘ 𝑖 ) − ( 𝐶 ‘ 𝑖 ) ) ↑ 2 ) ) |
| 127 |
62 83 67 84 126
|
fsumlt |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ X 𝑗 ∈ 𝑋 ( ( 𝐶 ‘ 𝑗 ) [,) ( 𝐷 ‘ 𝑗 ) ) ) → Σ 𝑖 ∈ 𝑋 ( ( ( 𝑌 ‘ 𝑖 ) − ( 𝑓 ‘ 𝑖 ) ) ↑ 2 ) < Σ 𝑖 ∈ 𝑋 ( ( ( 𝐷 ‘ 𝑖 ) − ( 𝐶 ‘ 𝑖 ) ) ↑ 2 ) ) |
| 128 |
38 61 127
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ X 𝑖 ∈ 𝑋 ( ( 𝐶 ‘ 𝑖 ) [,) ( 𝐷 ‘ 𝑖 ) ) ) → Σ 𝑖 ∈ 𝑋 ( ( ( 𝑌 ‘ 𝑖 ) − ( 𝑓 ‘ 𝑖 ) ) ↑ 2 ) < Σ 𝑖 ∈ 𝑋 ( ( ( 𝐷 ‘ 𝑖 ) − ( 𝐶 ‘ 𝑖 ) ) ↑ 2 ) ) |
| 129 |
38 76
|
syl |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ X 𝑖 ∈ 𝑋 ( ( 𝐶 ‘ 𝑖 ) [,) ( 𝐷 ‘ 𝑖 ) ) ) → Σ 𝑖 ∈ 𝑋 ( ( ( 𝐷 ‘ 𝑖 ) − ( 𝐶 ‘ 𝑖 ) ) ↑ 2 ) ∈ ℝ ) |
| 130 |
38 78
|
syl |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ X 𝑖 ∈ 𝑋 ( ( 𝐶 ‘ 𝑖 ) [,) ( 𝐷 ‘ 𝑖 ) ) ) → 0 ≤ Σ 𝑖 ∈ 𝑋 ( ( ( 𝐷 ‘ 𝑖 ) − ( 𝐶 ‘ 𝑖 ) ) ↑ 2 ) ) |
| 131 |
54 71 129 130
|
sqrtltd |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ X 𝑖 ∈ 𝑋 ( ( 𝐶 ‘ 𝑖 ) [,) ( 𝐷 ‘ 𝑖 ) ) ) → ( Σ 𝑖 ∈ 𝑋 ( ( ( 𝑌 ‘ 𝑖 ) − ( 𝑓 ‘ 𝑖 ) ) ↑ 2 ) < Σ 𝑖 ∈ 𝑋 ( ( ( 𝐷 ‘ 𝑖 ) − ( 𝐶 ‘ 𝑖 ) ) ↑ 2 ) ↔ ( √ ‘ Σ 𝑖 ∈ 𝑋 ( ( ( 𝑌 ‘ 𝑖 ) − ( 𝑓 ‘ 𝑖 ) ) ↑ 2 ) ) < ( √ ‘ Σ 𝑖 ∈ 𝑋 ( ( ( 𝐷 ‘ 𝑖 ) − ( 𝐶 ‘ 𝑖 ) ) ↑ 2 ) ) ) ) |
| 132 |
128 131
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ X 𝑖 ∈ 𝑋 ( ( 𝐶 ‘ 𝑖 ) [,) ( 𝐷 ‘ 𝑖 ) ) ) → ( √ ‘ Σ 𝑖 ∈ 𝑋 ( ( ( 𝑌 ‘ 𝑖 ) − ( 𝑓 ‘ 𝑖 ) ) ↑ 2 ) ) < ( √ ‘ Σ 𝑖 ∈ 𝑋 ( ( ( 𝐷 ‘ 𝑖 ) − ( 𝐶 ‘ 𝑖 ) ) ↑ 2 ) ) ) |
| 133 |
33 132
|
eqbrtrd |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ X 𝑖 ∈ 𝑋 ( ( 𝐶 ‘ 𝑖 ) [,) ( 𝐷 ‘ 𝑖 ) ) ) → ( 𝑌 ( dist ‘ ( ℝ^ ‘ 𝑋 ) ) 𝑓 ) < ( √ ‘ Σ 𝑖 ∈ 𝑋 ( ( ( 𝐷 ‘ 𝑖 ) − ( 𝐶 ‘ 𝑖 ) ) ↑ 2 ) ) ) |
| 134 |
81 98
|
rerpdivcld |
⊢ ( 𝜑 → ( 𝐸 / ( √ ‘ ( ♯ ‘ 𝑋 ) ) ) ∈ ℝ ) |
| 135 |
134
|
resqcld |
⊢ ( 𝜑 → ( ( 𝐸 / ( √ ‘ ( ♯ ‘ 𝑋 ) ) ) ↑ 2 ) ∈ ℝ ) |
| 136 |
135
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑋 ) → ( ( 𝐸 / ( √ ‘ ( ♯ ‘ 𝑋 ) ) ) ↑ 2 ) ∈ ℝ ) |
| 137 |
26 25
|
jca |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑋 ) → ( ( 𝐷 ‘ 𝑖 ) ∈ ℝ ∧ ( 𝐶 ‘ 𝑖 ) ∈ ℝ ) ) |
| 138 |
108 103
|
jca |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑋 ) → ( ( ( 𝑌 ‘ 𝑖 ) + ( 𝐸 / ( 2 · ( √ ‘ ( ♯ ‘ 𝑋 ) ) ) ) ) ∈ ℝ ∧ ( ( 𝑌 ‘ 𝑖 ) − ( 𝐸 / ( 2 · ( √ ‘ ( ♯ ‘ 𝑋 ) ) ) ) ) ∈ ℝ ) ) |
| 139 |
137 138
|
jca |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑋 ) → ( ( ( 𝐷 ‘ 𝑖 ) ∈ ℝ ∧ ( 𝐶 ‘ 𝑖 ) ∈ ℝ ) ∧ ( ( ( 𝑌 ‘ 𝑖 ) + ( 𝐸 / ( 2 · ( √ ‘ ( ♯ ‘ 𝑋 ) ) ) ) ) ∈ ℝ ∧ ( ( 𝑌 ‘ 𝑖 ) − ( 𝐸 / ( 2 · ( √ ‘ ( ♯ ‘ 𝑋 ) ) ) ) ) ∈ ℝ ) ) ) |
| 140 |
|
iooltub |
⊢ ( ( ( 𝑌 ‘ 𝑖 ) ∈ ℝ* ∧ ( ( 𝑌 ‘ 𝑖 ) + ( 𝐸 / ( 2 · ( √ ‘ ( ♯ ‘ 𝑋 ) ) ) ) ) ∈ ℝ* ∧ ( 𝐷 ‘ 𝑖 ) ∈ ( ( 𝑌 ‘ 𝑖 ) (,) ( ( 𝑌 ‘ 𝑖 ) + ( 𝐸 / ( 2 · ( √ ‘ ( ♯ ‘ 𝑋 ) ) ) ) ) ) ) → ( 𝐷 ‘ 𝑖 ) < ( ( 𝑌 ‘ 𝑖 ) + ( 𝐸 / ( 2 · ( √ ‘ ( ♯ ‘ 𝑋 ) ) ) ) ) ) |
| 141 |
89 109 9 140
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑋 ) → ( 𝐷 ‘ 𝑖 ) < ( ( 𝑌 ‘ 𝑖 ) + ( 𝐸 / ( 2 · ( √ ‘ ( ♯ ‘ 𝑋 ) ) ) ) ) ) |
| 142 |
|
ioogtlb |
⊢ ( ( ( ( 𝑌 ‘ 𝑖 ) − ( 𝐸 / ( 2 · ( √ ‘ ( ♯ ‘ 𝑋 ) ) ) ) ) ∈ ℝ* ∧ ( 𝑌 ‘ 𝑖 ) ∈ ℝ* ∧ ( 𝐶 ‘ 𝑖 ) ∈ ( ( ( 𝑌 ‘ 𝑖 ) − ( 𝐸 / ( 2 · ( √ ‘ ( ♯ ‘ 𝑋 ) ) ) ) ) (,) ( 𝑌 ‘ 𝑖 ) ) ) → ( ( 𝑌 ‘ 𝑖 ) − ( 𝐸 / ( 2 · ( √ ‘ ( ♯ ‘ 𝑋 ) ) ) ) ) < ( 𝐶 ‘ 𝑖 ) ) |
| 143 |
104 89 8 142
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑋 ) → ( ( 𝑌 ‘ 𝑖 ) − ( 𝐸 / ( 2 · ( √ ‘ ( ♯ ‘ 𝑋 ) ) ) ) ) < ( 𝐶 ‘ 𝑖 ) ) |
| 144 |
141 143
|
jca |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑋 ) → ( ( 𝐷 ‘ 𝑖 ) < ( ( 𝑌 ‘ 𝑖 ) + ( 𝐸 / ( 2 · ( √ ‘ ( ♯ ‘ 𝑋 ) ) ) ) ) ∧ ( ( 𝑌 ‘ 𝑖 ) − ( 𝐸 / ( 2 · ( √ ‘ ( ♯ ‘ 𝑋 ) ) ) ) ) < ( 𝐶 ‘ 𝑖 ) ) ) |
| 145 |
|
lt2sub |
⊢ ( ( ( ( 𝐷 ‘ 𝑖 ) ∈ ℝ ∧ ( 𝐶 ‘ 𝑖 ) ∈ ℝ ) ∧ ( ( ( 𝑌 ‘ 𝑖 ) + ( 𝐸 / ( 2 · ( √ ‘ ( ♯ ‘ 𝑋 ) ) ) ) ) ∈ ℝ ∧ ( ( 𝑌 ‘ 𝑖 ) − ( 𝐸 / ( 2 · ( √ ‘ ( ♯ ‘ 𝑋 ) ) ) ) ) ∈ ℝ ) ) → ( ( ( 𝐷 ‘ 𝑖 ) < ( ( 𝑌 ‘ 𝑖 ) + ( 𝐸 / ( 2 · ( √ ‘ ( ♯ ‘ 𝑋 ) ) ) ) ) ∧ ( ( 𝑌 ‘ 𝑖 ) − ( 𝐸 / ( 2 · ( √ ‘ ( ♯ ‘ 𝑋 ) ) ) ) ) < ( 𝐶 ‘ 𝑖 ) ) → ( ( 𝐷 ‘ 𝑖 ) − ( 𝐶 ‘ 𝑖 ) ) < ( ( ( 𝑌 ‘ 𝑖 ) + ( 𝐸 / ( 2 · ( √ ‘ ( ♯ ‘ 𝑋 ) ) ) ) ) − ( ( 𝑌 ‘ 𝑖 ) − ( 𝐸 / ( 2 · ( √ ‘ ( ♯ ‘ 𝑋 ) ) ) ) ) ) ) ) |
| 146 |
139 144 145
|
sylc |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑋 ) → ( ( 𝐷 ‘ 𝑖 ) − ( 𝐶 ‘ 𝑖 ) ) < ( ( ( 𝑌 ‘ 𝑖 ) + ( 𝐸 / ( 2 · ( √ ‘ ( ♯ ‘ 𝑋 ) ) ) ) ) − ( ( 𝑌 ‘ 𝑖 ) − ( 𝐸 / ( 2 · ( √ ‘ ( ♯ ‘ 𝑋 ) ) ) ) ) ) ) |
| 147 |
42
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑋 ) → ( 𝑌 ‘ 𝑖 ) ∈ ℂ ) |
| 148 |
102
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑋 ) → ( 𝐸 / ( 2 · ( √ ‘ ( ♯ ‘ 𝑋 ) ) ) ) ∈ ℂ ) |
| 149 |
147 148 148
|
pnncand |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑋 ) → ( ( ( 𝑌 ‘ 𝑖 ) + ( 𝐸 / ( 2 · ( √ ‘ ( ♯ ‘ 𝑋 ) ) ) ) ) − ( ( 𝑌 ‘ 𝑖 ) − ( 𝐸 / ( 2 · ( √ ‘ ( ♯ ‘ 𝑋 ) ) ) ) ) ) = ( ( 𝐸 / ( 2 · ( √ ‘ ( ♯ ‘ 𝑋 ) ) ) ) + ( 𝐸 / ( 2 · ( √ ‘ ( ♯ ‘ 𝑋 ) ) ) ) ) ) |
| 150 |
81
|
recnd |
⊢ ( 𝜑 → 𝐸 ∈ ℂ ) |
| 151 |
98
|
rpcnd |
⊢ ( 𝜑 → ( √ ‘ ( ♯ ‘ 𝑋 ) ) ∈ ℂ ) |
| 152 |
|
2cnd |
⊢ ( 𝜑 → 2 ∈ ℂ ) |
| 153 |
98
|
rpne0d |
⊢ ( 𝜑 → ( √ ‘ ( ♯ ‘ 𝑋 ) ) ≠ 0 ) |
| 154 |
91
|
rpne0d |
⊢ ( 𝜑 → 2 ≠ 0 ) |
| 155 |
150 151 152 153 154
|
divdiv3d |
⊢ ( 𝜑 → ( ( 𝐸 / ( √ ‘ ( ♯ ‘ 𝑋 ) ) ) / 2 ) = ( 𝐸 / ( 2 · ( √ ‘ ( ♯ ‘ 𝑋 ) ) ) ) ) |
| 156 |
155
|
eqcomd |
⊢ ( 𝜑 → ( 𝐸 / ( 2 · ( √ ‘ ( ♯ ‘ 𝑋 ) ) ) ) = ( ( 𝐸 / ( √ ‘ ( ♯ ‘ 𝑋 ) ) ) / 2 ) ) |
| 157 |
156 156
|
oveq12d |
⊢ ( 𝜑 → ( ( 𝐸 / ( 2 · ( √ ‘ ( ♯ ‘ 𝑋 ) ) ) ) + ( 𝐸 / ( 2 · ( √ ‘ ( ♯ ‘ 𝑋 ) ) ) ) ) = ( ( ( 𝐸 / ( √ ‘ ( ♯ ‘ 𝑋 ) ) ) / 2 ) + ( ( 𝐸 / ( √ ‘ ( ♯ ‘ 𝑋 ) ) ) / 2 ) ) ) |
| 158 |
150 151 153
|
divcld |
⊢ ( 𝜑 → ( 𝐸 / ( √ ‘ ( ♯ ‘ 𝑋 ) ) ) ∈ ℂ ) |
| 159 |
158
|
2halvesd |
⊢ ( 𝜑 → ( ( ( 𝐸 / ( √ ‘ ( ♯ ‘ 𝑋 ) ) ) / 2 ) + ( ( 𝐸 / ( √ ‘ ( ♯ ‘ 𝑋 ) ) ) / 2 ) ) = ( 𝐸 / ( √ ‘ ( ♯ ‘ 𝑋 ) ) ) ) |
| 160 |
157 159
|
eqtrd |
⊢ ( 𝜑 → ( ( 𝐸 / ( 2 · ( √ ‘ ( ♯ ‘ 𝑋 ) ) ) ) + ( 𝐸 / ( 2 · ( √ ‘ ( ♯ ‘ 𝑋 ) ) ) ) ) = ( 𝐸 / ( √ ‘ ( ♯ ‘ 𝑋 ) ) ) ) |
| 161 |
160
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑋 ) → ( ( 𝐸 / ( 2 · ( √ ‘ ( ♯ ‘ 𝑋 ) ) ) ) + ( 𝐸 / ( 2 · ( √ ‘ ( ♯ ‘ 𝑋 ) ) ) ) ) = ( 𝐸 / ( √ ‘ ( ♯ ‘ 𝑋 ) ) ) ) |
| 162 |
149 161
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑋 ) → ( ( ( 𝑌 ‘ 𝑖 ) + ( 𝐸 / ( 2 · ( √ ‘ ( ♯ ‘ 𝑋 ) ) ) ) ) − ( ( 𝑌 ‘ 𝑖 ) − ( 𝐸 / ( 2 · ( √ ‘ ( ♯ ‘ 𝑋 ) ) ) ) ) ) = ( 𝐸 / ( √ ‘ ( ♯ ‘ 𝑋 ) ) ) ) |
| 163 |
146 162
|
breqtrd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑋 ) → ( ( 𝐷 ‘ 𝑖 ) − ( 𝐶 ‘ 𝑖 ) ) < ( 𝐸 / ( √ ‘ ( ♯ ‘ 𝑋 ) ) ) ) |
| 164 |
134
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑋 ) → ( 𝐸 / ( √ ‘ ( ♯ ‘ 𝑋 ) ) ) ∈ ℝ ) |
| 165 |
|
0red |
⊢ ( 𝜑 → 0 ∈ ℝ ) |
| 166 |
98
|
rpred |
⊢ ( 𝜑 → ( √ ‘ ( ♯ ‘ 𝑋 ) ) ∈ ℝ ) |
| 167 |
7
|
rpgt0d |
⊢ ( 𝜑 → 0 < 𝐸 ) |
| 168 |
98
|
rpgt0d |
⊢ ( 𝜑 → 0 < ( √ ‘ ( ♯ ‘ 𝑋 ) ) ) |
| 169 |
81 166 167 168
|
divgt0d |
⊢ ( 𝜑 → 0 < ( 𝐸 / ( √ ‘ ( ♯ ‘ 𝑋 ) ) ) ) |
| 170 |
165 134 169
|
ltled |
⊢ ( 𝜑 → 0 ≤ ( 𝐸 / ( √ ‘ ( ♯ ‘ 𝑋 ) ) ) ) |
| 171 |
170
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑋 ) → 0 ≤ ( 𝐸 / ( √ ‘ ( ♯ ‘ 𝑋 ) ) ) ) |
| 172 |
|
lt2sq |
⊢ ( ( ( ( ( 𝐷 ‘ 𝑖 ) − ( 𝐶 ‘ 𝑖 ) ) ∈ ℝ ∧ 0 ≤ ( ( 𝐷 ‘ 𝑖 ) − ( 𝐶 ‘ 𝑖 ) ) ) ∧ ( ( 𝐸 / ( √ ‘ ( ♯ ‘ 𝑋 ) ) ) ∈ ℝ ∧ 0 ≤ ( 𝐸 / ( √ ‘ ( ♯ ‘ 𝑋 ) ) ) ) ) → ( ( ( 𝐷 ‘ 𝑖 ) − ( 𝐶 ‘ 𝑖 ) ) < ( 𝐸 / ( √ ‘ ( ♯ ‘ 𝑋 ) ) ) ↔ ( ( ( 𝐷 ‘ 𝑖 ) − ( 𝐶 ‘ 𝑖 ) ) ↑ 2 ) < ( ( 𝐸 / ( √ ‘ ( ♯ ‘ 𝑋 ) ) ) ↑ 2 ) ) ) |
| 173 |
74 120 164 171 172
|
syl22anc |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑋 ) → ( ( ( 𝐷 ‘ 𝑖 ) − ( 𝐶 ‘ 𝑖 ) ) < ( 𝐸 / ( √ ‘ ( ♯ ‘ 𝑋 ) ) ) ↔ ( ( ( 𝐷 ‘ 𝑖 ) − ( 𝐶 ‘ 𝑖 ) ) ↑ 2 ) < ( ( 𝐸 / ( √ ‘ ( ♯ ‘ 𝑋 ) ) ) ↑ 2 ) ) ) |
| 174 |
163 173
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑋 ) → ( ( ( 𝐷 ‘ 𝑖 ) − ( 𝐶 ‘ 𝑖 ) ) ↑ 2 ) < ( ( 𝐸 / ( √ ‘ ( ♯ ‘ 𝑋 ) ) ) ↑ 2 ) ) |
| 175 |
2 3 75 136 174
|
fsumlt |
⊢ ( 𝜑 → Σ 𝑖 ∈ 𝑋 ( ( ( 𝐷 ‘ 𝑖 ) − ( 𝐶 ‘ 𝑖 ) ) ↑ 2 ) < Σ 𝑖 ∈ 𝑋 ( ( 𝐸 / ( √ ‘ ( ♯ ‘ 𝑋 ) ) ) ↑ 2 ) ) |
| 176 |
2 136
|
fsumrecl |
⊢ ( 𝜑 → Σ 𝑖 ∈ 𝑋 ( ( 𝐸 / ( √ ‘ ( ♯ ‘ 𝑋 ) ) ) ↑ 2 ) ∈ ℝ ) |
| 177 |
164
|
sqge0d |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑋 ) → 0 ≤ ( ( 𝐸 / ( √ ‘ ( ♯ ‘ 𝑋 ) ) ) ↑ 2 ) ) |
| 178 |
2 136 177
|
fsumge0 |
⊢ ( 𝜑 → 0 ≤ Σ 𝑖 ∈ 𝑋 ( ( 𝐸 / ( √ ‘ ( ♯ ‘ 𝑋 ) ) ) ↑ 2 ) ) |
| 179 |
76 78 176 178
|
sqrtltd |
⊢ ( 𝜑 → ( Σ 𝑖 ∈ 𝑋 ( ( ( 𝐷 ‘ 𝑖 ) − ( 𝐶 ‘ 𝑖 ) ) ↑ 2 ) < Σ 𝑖 ∈ 𝑋 ( ( 𝐸 / ( √ ‘ ( ♯ ‘ 𝑋 ) ) ) ↑ 2 ) ↔ ( √ ‘ Σ 𝑖 ∈ 𝑋 ( ( ( 𝐷 ‘ 𝑖 ) − ( 𝐶 ‘ 𝑖 ) ) ↑ 2 ) ) < ( √ ‘ Σ 𝑖 ∈ 𝑋 ( ( 𝐸 / ( √ ‘ ( ♯ ‘ 𝑋 ) ) ) ↑ 2 ) ) ) ) |
| 180 |
175 179
|
mpbid |
⊢ ( 𝜑 → ( √ ‘ Σ 𝑖 ∈ 𝑋 ( ( ( 𝐷 ‘ 𝑖 ) − ( 𝐶 ‘ 𝑖 ) ) ↑ 2 ) ) < ( √ ‘ Σ 𝑖 ∈ 𝑋 ( ( 𝐸 / ( √ ‘ ( ♯ ‘ 𝑋 ) ) ) ↑ 2 ) ) ) |
| 181 |
135
|
recnd |
⊢ ( 𝜑 → ( ( 𝐸 / ( √ ‘ ( ♯ ‘ 𝑋 ) ) ) ↑ 2 ) ∈ ℂ ) |
| 182 |
|
fsumconst |
⊢ ( ( 𝑋 ∈ Fin ∧ ( ( 𝐸 / ( √ ‘ ( ♯ ‘ 𝑋 ) ) ) ↑ 2 ) ∈ ℂ ) → Σ 𝑖 ∈ 𝑋 ( ( 𝐸 / ( √ ‘ ( ♯ ‘ 𝑋 ) ) ) ↑ 2 ) = ( ( ♯ ‘ 𝑋 ) · ( ( 𝐸 / ( √ ‘ ( ♯ ‘ 𝑋 ) ) ) ↑ 2 ) ) ) |
| 183 |
2 181 182
|
syl2anc |
⊢ ( 𝜑 → Σ 𝑖 ∈ 𝑋 ( ( 𝐸 / ( √ ‘ ( ♯ ‘ 𝑋 ) ) ) ↑ 2 ) = ( ( ♯ ‘ 𝑋 ) · ( ( 𝐸 / ( √ ‘ ( ♯ ‘ 𝑋 ) ) ) ↑ 2 ) ) ) |
| 184 |
|
sqdiv |
⊢ ( ( 𝐸 ∈ ℂ ∧ ( √ ‘ ( ♯ ‘ 𝑋 ) ) ∈ ℂ ∧ ( √ ‘ ( ♯ ‘ 𝑋 ) ) ≠ 0 ) → ( ( 𝐸 / ( √ ‘ ( ♯ ‘ 𝑋 ) ) ) ↑ 2 ) = ( ( 𝐸 ↑ 2 ) / ( ( √ ‘ ( ♯ ‘ 𝑋 ) ) ↑ 2 ) ) ) |
| 185 |
150 151 153 184
|
syl3anc |
⊢ ( 𝜑 → ( ( 𝐸 / ( √ ‘ ( ♯ ‘ 𝑋 ) ) ) ↑ 2 ) = ( ( 𝐸 ↑ 2 ) / ( ( √ ‘ ( ♯ ‘ 𝑋 ) ) ↑ 2 ) ) ) |
| 186 |
95
|
recnd |
⊢ ( 𝜑 → ( ♯ ‘ 𝑋 ) ∈ ℂ ) |
| 187 |
|
sqrtth |
⊢ ( ( ♯ ‘ 𝑋 ) ∈ ℂ → ( ( √ ‘ ( ♯ ‘ 𝑋 ) ) ↑ 2 ) = ( ♯ ‘ 𝑋 ) ) |
| 188 |
186 187
|
syl |
⊢ ( 𝜑 → ( ( √ ‘ ( ♯ ‘ 𝑋 ) ) ↑ 2 ) = ( ♯ ‘ 𝑋 ) ) |
| 189 |
188
|
oveq2d |
⊢ ( 𝜑 → ( ( 𝐸 ↑ 2 ) / ( ( √ ‘ ( ♯ ‘ 𝑋 ) ) ↑ 2 ) ) = ( ( 𝐸 ↑ 2 ) / ( ♯ ‘ 𝑋 ) ) ) |
| 190 |
185 189
|
eqtrd |
⊢ ( 𝜑 → ( ( 𝐸 / ( √ ‘ ( ♯ ‘ 𝑋 ) ) ) ↑ 2 ) = ( ( 𝐸 ↑ 2 ) / ( ♯ ‘ 𝑋 ) ) ) |
| 191 |
190
|
oveq2d |
⊢ ( 𝜑 → ( ( ♯ ‘ 𝑋 ) · ( ( 𝐸 / ( √ ‘ ( ♯ ‘ 𝑋 ) ) ) ↑ 2 ) ) = ( ( ♯ ‘ 𝑋 ) · ( ( 𝐸 ↑ 2 ) / ( ♯ ‘ 𝑋 ) ) ) ) |
| 192 |
150
|
sqcld |
⊢ ( 𝜑 → ( 𝐸 ↑ 2 ) ∈ ℂ ) |
| 193 |
165 96
|
gtned |
⊢ ( 𝜑 → ( ♯ ‘ 𝑋 ) ≠ 0 ) |
| 194 |
192 186 193
|
divcan2d |
⊢ ( 𝜑 → ( ( ♯ ‘ 𝑋 ) · ( ( 𝐸 ↑ 2 ) / ( ♯ ‘ 𝑋 ) ) ) = ( 𝐸 ↑ 2 ) ) |
| 195 |
183 191 194
|
3eqtrd |
⊢ ( 𝜑 → Σ 𝑖 ∈ 𝑋 ( ( 𝐸 / ( √ ‘ ( ♯ ‘ 𝑋 ) ) ) ↑ 2 ) = ( 𝐸 ↑ 2 ) ) |
| 196 |
195
|
fveq2d |
⊢ ( 𝜑 → ( √ ‘ Σ 𝑖 ∈ 𝑋 ( ( 𝐸 / ( √ ‘ ( ♯ ‘ 𝑋 ) ) ) ↑ 2 ) ) = ( √ ‘ ( 𝐸 ↑ 2 ) ) ) |
| 197 |
165 81 167
|
ltled |
⊢ ( 𝜑 → 0 ≤ 𝐸 ) |
| 198 |
|
sqrtsq |
⊢ ( ( 𝐸 ∈ ℝ ∧ 0 ≤ 𝐸 ) → ( √ ‘ ( 𝐸 ↑ 2 ) ) = 𝐸 ) |
| 199 |
81 197 198
|
syl2anc |
⊢ ( 𝜑 → ( √ ‘ ( 𝐸 ↑ 2 ) ) = 𝐸 ) |
| 200 |
|
eqidd |
⊢ ( 𝜑 → 𝐸 = 𝐸 ) |
| 201 |
196 199 200
|
3eqtrd |
⊢ ( 𝜑 → ( √ ‘ Σ 𝑖 ∈ 𝑋 ( ( 𝐸 / ( √ ‘ ( ♯ ‘ 𝑋 ) ) ) ↑ 2 ) ) = 𝐸 ) |
| 202 |
180 201
|
breqtrd |
⊢ ( 𝜑 → ( √ ‘ Σ 𝑖 ∈ 𝑋 ( ( ( 𝐷 ‘ 𝑖 ) − ( 𝐶 ‘ 𝑖 ) ) ↑ 2 ) ) < 𝐸 ) |
| 203 |
202
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ X 𝑖 ∈ 𝑋 ( ( 𝐶 ‘ 𝑖 ) [,) ( 𝐷 ‘ 𝑖 ) ) ) → ( √ ‘ Σ 𝑖 ∈ 𝑋 ( ( ( 𝐷 ‘ 𝑖 ) − ( 𝐶 ‘ 𝑖 ) ) ↑ 2 ) ) < 𝐸 ) |
| 204 |
73 80 82 133 203
|
lttrd |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ X 𝑖 ∈ 𝑋 ( ( 𝐶 ‘ 𝑖 ) [,) ( 𝐷 ‘ 𝑖 ) ) ) → ( 𝑌 ( dist ‘ ( ℝ^ ‘ 𝑋 ) ) 𝑓 ) < 𝐸 ) |
| 205 |
|
eqid |
⊢ ( dist ‘ ( ℝ^ ‘ 𝑋 ) ) = ( dist ‘ ( ℝ^ ‘ 𝑋 ) ) |
| 206 |
205
|
rrxmetfi |
⊢ ( 𝑋 ∈ Fin → ( dist ‘ ( ℝ^ ‘ 𝑋 ) ) ∈ ( Met ‘ ( ℝ ↑m 𝑋 ) ) ) |
| 207 |
|
metxmet |
⊢ ( ( dist ‘ ( ℝ^ ‘ 𝑋 ) ) ∈ ( Met ‘ ( ℝ ↑m 𝑋 ) ) → ( dist ‘ ( ℝ^ ‘ 𝑋 ) ) ∈ ( ∞Met ‘ ( ℝ ↑m 𝑋 ) ) ) |
| 208 |
2 206 207
|
3syl |
⊢ ( 𝜑 → ( dist ‘ ( ℝ^ ‘ 𝑋 ) ) ∈ ( ∞Met ‘ ( ℝ ↑m 𝑋 ) ) ) |
| 209 |
208
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ X 𝑖 ∈ 𝑋 ( ( 𝐶 ‘ 𝑖 ) [,) ( 𝐷 ‘ 𝑖 ) ) ) → ( dist ‘ ( ℝ^ ‘ 𝑋 ) ) ∈ ( ∞Met ‘ ( ℝ ↑m 𝑋 ) ) ) |
| 210 |
82
|
rexrd |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ X 𝑖 ∈ 𝑋 ( ( 𝐶 ‘ 𝑖 ) [,) ( 𝐷 ‘ 𝑖 ) ) ) → 𝐸 ∈ ℝ* ) |
| 211 |
31 11
|
eleqtrdi |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ X 𝑖 ∈ 𝑋 ( ( 𝐶 ‘ 𝑖 ) [,) ( 𝐷 ‘ 𝑖 ) ) ) → 𝑓 ∈ ( ℝ ↑m 𝑋 ) ) |
| 212 |
|
elbl2 |
⊢ ( ( ( ( dist ‘ ( ℝ^ ‘ 𝑋 ) ) ∈ ( ∞Met ‘ ( ℝ ↑m 𝑋 ) ) ∧ 𝐸 ∈ ℝ* ) ∧ ( 𝑌 ∈ ( ℝ ↑m 𝑋 ) ∧ 𝑓 ∈ ( ℝ ↑m 𝑋 ) ) ) → ( 𝑓 ∈ ( 𝑌 ( ball ‘ ( dist ‘ ( ℝ^ ‘ 𝑋 ) ) ) 𝐸 ) ↔ ( 𝑌 ( dist ‘ ( ℝ^ ‘ 𝑋 ) ) 𝑓 ) < 𝐸 ) ) |
| 213 |
209 210 24 211 212
|
syl22anc |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ X 𝑖 ∈ 𝑋 ( ( 𝐶 ‘ 𝑖 ) [,) ( 𝐷 ‘ 𝑖 ) ) ) → ( 𝑓 ∈ ( 𝑌 ( ball ‘ ( dist ‘ ( ℝ^ ‘ 𝑋 ) ) ) 𝐸 ) ↔ ( 𝑌 ( dist ‘ ( ℝ^ ‘ 𝑋 ) ) 𝑓 ) < 𝐸 ) ) |
| 214 |
204 213
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ X 𝑖 ∈ 𝑋 ( ( 𝐶 ‘ 𝑖 ) [,) ( 𝐷 ‘ 𝑖 ) ) ) → 𝑓 ∈ ( 𝑌 ( ball ‘ ( dist ‘ ( ℝ^ ‘ 𝑋 ) ) ) 𝐸 ) ) |
| 215 |
214
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑓 ∈ X 𝑖 ∈ 𝑋 ( ( 𝐶 ‘ 𝑖 ) [,) ( 𝐷 ‘ 𝑖 ) ) 𝑓 ∈ ( 𝑌 ( ball ‘ ( dist ‘ ( ℝ^ ‘ 𝑋 ) ) ) 𝐸 ) ) |
| 216 |
|
dfss3 |
⊢ ( X 𝑖 ∈ 𝑋 ( ( 𝐶 ‘ 𝑖 ) [,) ( 𝐷 ‘ 𝑖 ) ) ⊆ ( 𝑌 ( ball ‘ ( dist ‘ ( ℝ^ ‘ 𝑋 ) ) ) 𝐸 ) ↔ ∀ 𝑓 ∈ X 𝑖 ∈ 𝑋 ( ( 𝐶 ‘ 𝑖 ) [,) ( 𝐷 ‘ 𝑖 ) ) 𝑓 ∈ ( 𝑌 ( ball ‘ ( dist ‘ ( ℝ^ ‘ 𝑋 ) ) ) 𝐸 ) ) |
| 217 |
215 216
|
sylibr |
⊢ ( 𝜑 → X 𝑖 ∈ 𝑋 ( ( 𝐶 ‘ 𝑖 ) [,) ( 𝐷 ‘ 𝑖 ) ) ⊆ ( 𝑌 ( ball ‘ ( dist ‘ ( ℝ^ ‘ 𝑋 ) ) ) 𝐸 ) ) |