Step |
Hyp |
Ref |
Expression |
1 |
|
hoiqssbllem2.i |
|- F/ i ph |
2 |
|
hoiqssbllem2.x |
|- ( ph -> X e. Fin ) |
3 |
|
hoiqssbllem2.n |
|- ( ph -> X =/= (/) ) |
4 |
|
hoiqssbllem2.y |
|- ( ph -> Y e. ( RR ^m X ) ) |
5 |
|
hoiqssbllem2.c |
|- ( ph -> C : X --> RR ) |
6 |
|
hoiqssbllem2.d |
|- ( ph -> D : X --> RR ) |
7 |
|
hoiqssbllem2.e |
|- ( ph -> E e. RR+ ) |
8 |
|
hoiqssbllem2.l |
|- ( ( ph /\ i e. X ) -> ( C ` i ) e. ( ( ( Y ` i ) - ( E / ( 2 x. ( sqrt ` ( # ` X ) ) ) ) ) (,) ( Y ` i ) ) ) |
9 |
|
hoiqssbllem2.r |
|- ( ( ph /\ i e. X ) -> ( D ` i ) e. ( ( Y ` i ) (,) ( ( Y ` i ) + ( E / ( 2 x. ( sqrt ` ( # ` X ) ) ) ) ) ) ) |
10 |
|
eqid |
|- ( RR^ ` X ) = ( RR^ ` X ) |
11 |
|
eqid |
|- ( RR ^m X ) = ( RR ^m X ) |
12 |
10 11
|
rrxdsfi |
|- ( X e. Fin -> ( dist ` ( RR^ ` X ) ) = ( g e. ( RR ^m X ) , h e. ( RR ^m X ) |-> ( sqrt ` sum_ i e. X ( ( ( g ` i ) - ( h ` i ) ) ^ 2 ) ) ) ) |
13 |
2 12
|
syl |
|- ( ph -> ( dist ` ( RR^ ` X ) ) = ( g e. ( RR ^m X ) , h e. ( RR ^m X ) |-> ( sqrt ` sum_ i e. X ( ( ( g ` i ) - ( h ` i ) ) ^ 2 ) ) ) ) |
14 |
13
|
adantr |
|- ( ( ph /\ f e. X_ i e. X ( ( C ` i ) [,) ( D ` i ) ) ) -> ( dist ` ( RR^ ` X ) ) = ( g e. ( RR ^m X ) , h e. ( RR ^m X ) |-> ( sqrt ` sum_ i e. X ( ( ( g ` i ) - ( h ` i ) ) ^ 2 ) ) ) ) |
15 |
|
fveq1 |
|- ( g = Y -> ( g ` i ) = ( Y ` i ) ) |
16 |
15
|
adantr |
|- ( ( g = Y /\ h = f ) -> ( g ` i ) = ( Y ` i ) ) |
17 |
|
fveq1 |
|- ( h = f -> ( h ` i ) = ( f ` i ) ) |
18 |
17
|
adantl |
|- ( ( g = Y /\ h = f ) -> ( h ` i ) = ( f ` i ) ) |
19 |
16 18
|
oveq12d |
|- ( ( g = Y /\ h = f ) -> ( ( g ` i ) - ( h ` i ) ) = ( ( Y ` i ) - ( f ` i ) ) ) |
20 |
19
|
oveq1d |
|- ( ( g = Y /\ h = f ) -> ( ( ( g ` i ) - ( h ` i ) ) ^ 2 ) = ( ( ( Y ` i ) - ( f ` i ) ) ^ 2 ) ) |
21 |
20
|
sumeq2sdv |
|- ( ( g = Y /\ h = f ) -> sum_ i e. X ( ( ( g ` i ) - ( h ` i ) ) ^ 2 ) = sum_ i e. X ( ( ( Y ` i ) - ( f ` i ) ) ^ 2 ) ) |
22 |
21
|
fveq2d |
|- ( ( g = Y /\ h = f ) -> ( sqrt ` sum_ i e. X ( ( ( g ` i ) - ( h ` i ) ) ^ 2 ) ) = ( sqrt ` sum_ i e. X ( ( ( Y ` i ) - ( f ` i ) ) ^ 2 ) ) ) |
23 |
22
|
adantl |
|- ( ( ( ph /\ f e. X_ i e. X ( ( C ` i ) [,) ( D ` i ) ) ) /\ ( g = Y /\ h = f ) ) -> ( sqrt ` sum_ i e. X ( ( ( g ` i ) - ( h ` i ) ) ^ 2 ) ) = ( sqrt ` sum_ i e. X ( ( ( Y ` i ) - ( f ` i ) ) ^ 2 ) ) ) |
24 |
4
|
adantr |
|- ( ( ph /\ f e. X_ i e. X ( ( C ` i ) [,) ( D ` i ) ) ) -> Y e. ( RR ^m X ) ) |
25 |
5
|
ffvelrnda |
|- ( ( ph /\ i e. X ) -> ( C ` i ) e. RR ) |
26 |
6
|
ffvelrnda |
|- ( ( ph /\ i e. X ) -> ( D ` i ) e. RR ) |
27 |
26
|
rexrd |
|- ( ( ph /\ i e. X ) -> ( D ` i ) e. RR* ) |
28 |
1 25 27
|
hoissrrn2 |
|- ( ph -> X_ i e. X ( ( C ` i ) [,) ( D ` i ) ) C_ ( RR ^m X ) ) |
29 |
28
|
adantr |
|- ( ( ph /\ f e. X_ i e. X ( ( C ` i ) [,) ( D ` i ) ) ) -> X_ i e. X ( ( C ` i ) [,) ( D ` i ) ) C_ ( RR ^m X ) ) |
30 |
|
simpr |
|- ( ( ph /\ f e. X_ i e. X ( ( C ` i ) [,) ( D ` i ) ) ) -> f e. X_ i e. X ( ( C ` i ) [,) ( D ` i ) ) ) |
31 |
29 30
|
sseldd |
|- ( ( ph /\ f e. X_ i e. X ( ( C ` i ) [,) ( D ` i ) ) ) -> f e. ( RR ^m X ) ) |
32 |
|
fvexd |
|- ( ( ph /\ f e. X_ i e. X ( ( C ` i ) [,) ( D ` i ) ) ) -> ( sqrt ` sum_ i e. X ( ( ( Y ` i ) - ( f ` i ) ) ^ 2 ) ) e. _V ) |
33 |
14 23 24 31 32
|
ovmpod |
|- ( ( ph /\ f e. X_ i e. X ( ( C ` i ) [,) ( D ` i ) ) ) -> ( Y ( dist ` ( RR^ ` X ) ) f ) = ( sqrt ` sum_ i e. X ( ( ( Y ` i ) - ( f ` i ) ) ^ 2 ) ) ) |
34 |
|
nfcv |
|- F/_ i f |
35 |
|
nfixp1 |
|- F/_ i X_ i e. X ( ( C ` i ) [,) ( D ` i ) ) |
36 |
34 35
|
nfel |
|- F/ i f e. X_ i e. X ( ( C ` i ) [,) ( D ` i ) ) |
37 |
1 36
|
nfan |
|- F/ i ( ph /\ f e. X_ i e. X ( ( C ` i ) [,) ( D ` i ) ) ) |
38 |
|
simpl |
|- ( ( ph /\ f e. X_ i e. X ( ( C ` i ) [,) ( D ` i ) ) ) -> ph ) |
39 |
38 2
|
syl |
|- ( ( ph /\ f e. X_ i e. X ( ( C ` i ) [,) ( D ` i ) ) ) -> X e. Fin ) |
40 |
|
elmapi |
|- ( Y e. ( RR ^m X ) -> Y : X --> RR ) |
41 |
4 40
|
syl |
|- ( ph -> Y : X --> RR ) |
42 |
41
|
ffvelrnda |
|- ( ( ph /\ i e. X ) -> ( Y ` i ) e. RR ) |
43 |
38 42
|
sylan |
|- ( ( ( ph /\ f e. X_ i e. X ( ( C ` i ) [,) ( D ` i ) ) ) /\ i e. X ) -> ( Y ` i ) e. RR ) |
44 |
|
icossre |
|- ( ( ( C ` i ) e. RR /\ ( D ` i ) e. RR* ) -> ( ( C ` i ) [,) ( D ` i ) ) C_ RR ) |
45 |
25 27 44
|
syl2anc |
|- ( ( ph /\ i e. X ) -> ( ( C ` i ) [,) ( D ` i ) ) C_ RR ) |
46 |
45
|
adantlr |
|- ( ( ( ph /\ f e. X_ i e. X ( ( C ` i ) [,) ( D ` i ) ) ) /\ i e. X ) -> ( ( C ` i ) [,) ( D ` i ) ) C_ RR ) |
47 |
|
fvixp2 |
|- ( ( f e. X_ i e. X ( ( C ` i ) [,) ( D ` i ) ) /\ i e. X ) -> ( f ` i ) e. ( ( C ` i ) [,) ( D ` i ) ) ) |
48 |
47
|
adantll |
|- ( ( ( ph /\ f e. X_ i e. X ( ( C ` i ) [,) ( D ` i ) ) ) /\ i e. X ) -> ( f ` i ) e. ( ( C ` i ) [,) ( D ` i ) ) ) |
49 |
46 48
|
sseldd |
|- ( ( ( ph /\ f e. X_ i e. X ( ( C ` i ) [,) ( D ` i ) ) ) /\ i e. X ) -> ( f ` i ) e. RR ) |
50 |
43 49
|
resubcld |
|- ( ( ( ph /\ f e. X_ i e. X ( ( C ` i ) [,) ( D ` i ) ) ) /\ i e. X ) -> ( ( Y ` i ) - ( f ` i ) ) e. RR ) |
51 |
|
2nn0 |
|- 2 e. NN0 |
52 |
51
|
a1i |
|- ( ( ( ph /\ f e. X_ i e. X ( ( C ` i ) [,) ( D ` i ) ) ) /\ i e. X ) -> 2 e. NN0 ) |
53 |
50 52
|
reexpcld |
|- ( ( ( ph /\ f e. X_ i e. X ( ( C ` i ) [,) ( D ` i ) ) ) /\ i e. X ) -> ( ( ( Y ` i ) - ( f ` i ) ) ^ 2 ) e. RR ) |
54 |
37 39 53
|
fsumreclf |
|- ( ( ph /\ f e. X_ i e. X ( ( C ` i ) [,) ( D ` i ) ) ) -> sum_ i e. X ( ( ( Y ` i ) - ( f ` i ) ) ^ 2 ) e. RR ) |
55 |
|
fveq2 |
|- ( i = j -> ( C ` i ) = ( C ` j ) ) |
56 |
|
fveq2 |
|- ( i = j -> ( D ` i ) = ( D ` j ) ) |
57 |
55 56
|
oveq12d |
|- ( i = j -> ( ( C ` i ) [,) ( D ` i ) ) = ( ( C ` j ) [,) ( D ` j ) ) ) |
58 |
57
|
cbvixpv |
|- X_ i e. X ( ( C ` i ) [,) ( D ` i ) ) = X_ j e. X ( ( C ` j ) [,) ( D ` j ) ) |
59 |
58
|
eleq2i |
|- ( f e. X_ i e. X ( ( C ` i ) [,) ( D ` i ) ) <-> f e. X_ j e. X ( ( C ` j ) [,) ( D ` j ) ) ) |
60 |
59
|
biimpi |
|- ( f e. X_ i e. X ( ( C ` i ) [,) ( D ` i ) ) -> f e. X_ j e. X ( ( C ` j ) [,) ( D ` j ) ) ) |
61 |
60
|
adantl |
|- ( ( ph /\ f e. X_ i e. X ( ( C ` i ) [,) ( D ` i ) ) ) -> f e. X_ j e. X ( ( C ` j ) [,) ( D ` j ) ) ) |
62 |
2
|
adantr |
|- ( ( ph /\ f e. X_ j e. X ( ( C ` j ) [,) ( D ` j ) ) ) -> X e. Fin ) |
63 |
|
simpll |
|- ( ( ( ph /\ f e. X_ j e. X ( ( C ` j ) [,) ( D ` j ) ) ) /\ i e. X ) -> ph ) |
64 |
59
|
biimpri |
|- ( f e. X_ j e. X ( ( C ` j ) [,) ( D ` j ) ) -> f e. X_ i e. X ( ( C ` i ) [,) ( D ` i ) ) ) |
65 |
64
|
ad2antlr |
|- ( ( ( ph /\ f e. X_ j e. X ( ( C ` j ) [,) ( D ` j ) ) ) /\ i e. X ) -> f e. X_ i e. X ( ( C ` i ) [,) ( D ` i ) ) ) |
66 |
|
simpr |
|- ( ( ( ph /\ f e. X_ j e. X ( ( C ` j ) [,) ( D ` j ) ) ) /\ i e. X ) -> i e. X ) |
67 |
63 65 66 53
|
syl21anc |
|- ( ( ( ph /\ f e. X_ j e. X ( ( C ` j ) [,) ( D ` j ) ) ) /\ i e. X ) -> ( ( ( Y ` i ) - ( f ` i ) ) ^ 2 ) e. RR ) |
68 |
50
|
sqge0d |
|- ( ( ( ph /\ f e. X_ i e. X ( ( C ` i ) [,) ( D ` i ) ) ) /\ i e. X ) -> 0 <_ ( ( ( Y ` i ) - ( f ` i ) ) ^ 2 ) ) |
69 |
63 65 66 68
|
syl21anc |
|- ( ( ( ph /\ f e. X_ j e. X ( ( C ` j ) [,) ( D ` j ) ) ) /\ i e. X ) -> 0 <_ ( ( ( Y ` i ) - ( f ` i ) ) ^ 2 ) ) |
70 |
62 67 69
|
fsumge0 |
|- ( ( ph /\ f e. X_ j e. X ( ( C ` j ) [,) ( D ` j ) ) ) -> 0 <_ sum_ i e. X ( ( ( Y ` i ) - ( f ` i ) ) ^ 2 ) ) |
71 |
38 61 70
|
syl2anc |
|- ( ( ph /\ f e. X_ i e. X ( ( C ` i ) [,) ( D ` i ) ) ) -> 0 <_ sum_ i e. X ( ( ( Y ` i ) - ( f ` i ) ) ^ 2 ) ) |
72 |
54 71
|
resqrtcld |
|- ( ( ph /\ f e. X_ i e. X ( ( C ` i ) [,) ( D ` i ) ) ) -> ( sqrt ` sum_ i e. X ( ( ( Y ` i ) - ( f ` i ) ) ^ 2 ) ) e. RR ) |
73 |
33 72
|
eqeltrd |
|- ( ( ph /\ f e. X_ i e. X ( ( C ` i ) [,) ( D ` i ) ) ) -> ( Y ( dist ` ( RR^ ` X ) ) f ) e. RR ) |
74 |
26 25
|
resubcld |
|- ( ( ph /\ i e. X ) -> ( ( D ` i ) - ( C ` i ) ) e. RR ) |
75 |
74
|
resqcld |
|- ( ( ph /\ i e. X ) -> ( ( ( D ` i ) - ( C ` i ) ) ^ 2 ) e. RR ) |
76 |
2 75
|
fsumrecl |
|- ( ph -> sum_ i e. X ( ( ( D ` i ) - ( C ` i ) ) ^ 2 ) e. RR ) |
77 |
74
|
sqge0d |
|- ( ( ph /\ i e. X ) -> 0 <_ ( ( ( D ` i ) - ( C ` i ) ) ^ 2 ) ) |
78 |
2 75 77
|
fsumge0 |
|- ( ph -> 0 <_ sum_ i e. X ( ( ( D ` i ) - ( C ` i ) ) ^ 2 ) ) |
79 |
76 78
|
resqrtcld |
|- ( ph -> ( sqrt ` sum_ i e. X ( ( ( D ` i ) - ( C ` i ) ) ^ 2 ) ) e. RR ) |
80 |
79
|
adantr |
|- ( ( ph /\ f e. X_ i e. X ( ( C ` i ) [,) ( D ` i ) ) ) -> ( sqrt ` sum_ i e. X ( ( ( D ` i ) - ( C ` i ) ) ^ 2 ) ) e. RR ) |
81 |
7
|
rpred |
|- ( ph -> E e. RR ) |
82 |
81
|
adantr |
|- ( ( ph /\ f e. X_ i e. X ( ( C ` i ) [,) ( D ` i ) ) ) -> E e. RR ) |
83 |
3
|
adantr |
|- ( ( ph /\ f e. X_ j e. X ( ( C ` j ) [,) ( D ` j ) ) ) -> X =/= (/) ) |
84 |
75
|
adantlr |
|- ( ( ( ph /\ f e. X_ j e. X ( ( C ` j ) [,) ( D ` j ) ) ) /\ i e. X ) -> ( ( ( D ` i ) - ( C ` i ) ) ^ 2 ) e. RR ) |
85 |
38 26
|
sylan |
|- ( ( ( ph /\ f e. X_ i e. X ( ( C ` i ) [,) ( D ` i ) ) ) /\ i e. X ) -> ( D ` i ) e. RR ) |
86 |
38 25
|
sylan |
|- ( ( ( ph /\ f e. X_ i e. X ( ( C ` i ) [,) ( D ` i ) ) ) /\ i e. X ) -> ( C ` i ) e. RR ) |
87 |
85 86
|
resubcld |
|- ( ( ( ph /\ f e. X_ i e. X ( ( C ` i ) [,) ( D ` i ) ) ) /\ i e. X ) -> ( ( D ` i ) - ( C ` i ) ) e. RR ) |
88 |
25
|
rexrd |
|- ( ( ph /\ i e. X ) -> ( C ` i ) e. RR* ) |
89 |
42
|
rexrd |
|- ( ( ph /\ i e. X ) -> ( Y ` i ) e. RR* ) |
90 |
|
2rp |
|- 2 e. RR+ |
91 |
90
|
a1i |
|- ( ph -> 2 e. RR+ ) |
92 |
|
hashnncl |
|- ( X e. Fin -> ( ( # ` X ) e. NN <-> X =/= (/) ) ) |
93 |
2 92
|
syl |
|- ( ph -> ( ( # ` X ) e. NN <-> X =/= (/) ) ) |
94 |
3 93
|
mpbird |
|- ( ph -> ( # ` X ) e. NN ) |
95 |
94
|
nnred |
|- ( ph -> ( # ` X ) e. RR ) |
96 |
94
|
nngt0d |
|- ( ph -> 0 < ( # ` X ) ) |
97 |
95 96
|
elrpd |
|- ( ph -> ( # ` X ) e. RR+ ) |
98 |
97
|
rpsqrtcld |
|- ( ph -> ( sqrt ` ( # ` X ) ) e. RR+ ) |
99 |
91 98
|
rpmulcld |
|- ( ph -> ( 2 x. ( sqrt ` ( # ` X ) ) ) e. RR+ ) |
100 |
7 99
|
rpdivcld |
|- ( ph -> ( E / ( 2 x. ( sqrt ` ( # ` X ) ) ) ) e. RR+ ) |
101 |
100
|
rpred |
|- ( ph -> ( E / ( 2 x. ( sqrt ` ( # ` X ) ) ) ) e. RR ) |
102 |
101
|
adantr |
|- ( ( ph /\ i e. X ) -> ( E / ( 2 x. ( sqrt ` ( # ` X ) ) ) ) e. RR ) |
103 |
42 102
|
resubcld |
|- ( ( ph /\ i e. X ) -> ( ( Y ` i ) - ( E / ( 2 x. ( sqrt ` ( # ` X ) ) ) ) ) e. RR ) |
104 |
103
|
rexrd |
|- ( ( ph /\ i e. X ) -> ( ( Y ` i ) - ( E / ( 2 x. ( sqrt ` ( # ` X ) ) ) ) ) e. RR* ) |
105 |
|
iooltub |
|- ( ( ( ( Y ` i ) - ( E / ( 2 x. ( sqrt ` ( # ` X ) ) ) ) ) e. RR* /\ ( Y ` i ) e. RR* /\ ( C ` i ) e. ( ( ( Y ` i ) - ( E / ( 2 x. ( sqrt ` ( # ` X ) ) ) ) ) (,) ( Y ` i ) ) ) -> ( C ` i ) < ( Y ` i ) ) |
106 |
104 89 8 105
|
syl3anc |
|- ( ( ph /\ i e. X ) -> ( C ` i ) < ( Y ` i ) ) |
107 |
25 42 106
|
ltled |
|- ( ( ph /\ i e. X ) -> ( C ` i ) <_ ( Y ` i ) ) |
108 |
42 102
|
readdcld |
|- ( ( ph /\ i e. X ) -> ( ( Y ` i ) + ( E / ( 2 x. ( sqrt ` ( # ` X ) ) ) ) ) e. RR ) |
109 |
108
|
rexrd |
|- ( ( ph /\ i e. X ) -> ( ( Y ` i ) + ( E / ( 2 x. ( sqrt ` ( # ` X ) ) ) ) ) e. RR* ) |
110 |
|
ioogtlb |
|- ( ( ( Y ` i ) e. RR* /\ ( ( Y ` i ) + ( E / ( 2 x. ( sqrt ` ( # ` X ) ) ) ) ) e. RR* /\ ( D ` i ) e. ( ( Y ` i ) (,) ( ( Y ` i ) + ( E / ( 2 x. ( sqrt ` ( # ` X ) ) ) ) ) ) ) -> ( Y ` i ) < ( D ` i ) ) |
111 |
89 109 9 110
|
syl3anc |
|- ( ( ph /\ i e. X ) -> ( Y ` i ) < ( D ` i ) ) |
112 |
88 27 89 107 111
|
elicod |
|- ( ( ph /\ i e. X ) -> ( Y ` i ) e. ( ( C ` i ) [,) ( D ` i ) ) ) |
113 |
38 112
|
sylan |
|- ( ( ( ph /\ f e. X_ i e. X ( ( C ` i ) [,) ( D ` i ) ) ) /\ i e. X ) -> ( Y ` i ) e. ( ( C ` i ) [,) ( D ` i ) ) ) |
114 |
|
icodiamlt |
|- ( ( ( ( C ` i ) e. RR /\ ( D ` i ) e. RR ) /\ ( ( Y ` i ) e. ( ( C ` i ) [,) ( D ` i ) ) /\ ( f ` i ) e. ( ( C ` i ) [,) ( D ` i ) ) ) ) -> ( abs ` ( ( Y ` i ) - ( f ` i ) ) ) < ( ( D ` i ) - ( C ` i ) ) ) |
115 |
86 85 113 48 114
|
syl22anc |
|- ( ( ( ph /\ f e. X_ i e. X ( ( C ` i ) [,) ( D ` i ) ) ) /\ i e. X ) -> ( abs ` ( ( Y ` i ) - ( f ` i ) ) ) < ( ( D ` i ) - ( C ` i ) ) ) |
116 |
|
0red |
|- ( ( ph /\ i e. X ) -> 0 e. RR ) |
117 |
25 42 26 107 111
|
lelttrd |
|- ( ( ph /\ i e. X ) -> ( C ` i ) < ( D ` i ) ) |
118 |
25 26
|
posdifd |
|- ( ( ph /\ i e. X ) -> ( ( C ` i ) < ( D ` i ) <-> 0 < ( ( D ` i ) - ( C ` i ) ) ) ) |
119 |
117 118
|
mpbid |
|- ( ( ph /\ i e. X ) -> 0 < ( ( D ` i ) - ( C ` i ) ) ) |
120 |
116 74 119
|
ltled |
|- ( ( ph /\ i e. X ) -> 0 <_ ( ( D ` i ) - ( C ` i ) ) ) |
121 |
74 120
|
absidd |
|- ( ( ph /\ i e. X ) -> ( abs ` ( ( D ` i ) - ( C ` i ) ) ) = ( ( D ` i ) - ( C ` i ) ) ) |
122 |
121
|
eqcomd |
|- ( ( ph /\ i e. X ) -> ( ( D ` i ) - ( C ` i ) ) = ( abs ` ( ( D ` i ) - ( C ` i ) ) ) ) |
123 |
122
|
adantlr |
|- ( ( ( ph /\ f e. X_ i e. X ( ( C ` i ) [,) ( D ` i ) ) ) /\ i e. X ) -> ( ( D ` i ) - ( C ` i ) ) = ( abs ` ( ( D ` i ) - ( C ` i ) ) ) ) |
124 |
115 123
|
breqtrd |
|- ( ( ( ph /\ f e. X_ i e. X ( ( C ` i ) [,) ( D ` i ) ) ) /\ i e. X ) -> ( abs ` ( ( Y ` i ) - ( f ` i ) ) ) < ( abs ` ( ( D ` i ) - ( C ` i ) ) ) ) |
125 |
50 87 124
|
abslt2sqd |
|- ( ( ( ph /\ f e. X_ i e. X ( ( C ` i ) [,) ( D ` i ) ) ) /\ i e. X ) -> ( ( ( Y ` i ) - ( f ` i ) ) ^ 2 ) < ( ( ( D ` i ) - ( C ` i ) ) ^ 2 ) ) |
126 |
63 65 66 125
|
syl21anc |
|- ( ( ( ph /\ f e. X_ j e. X ( ( C ` j ) [,) ( D ` j ) ) ) /\ i e. X ) -> ( ( ( Y ` i ) - ( f ` i ) ) ^ 2 ) < ( ( ( D ` i ) - ( C ` i ) ) ^ 2 ) ) |
127 |
62 83 67 84 126
|
fsumlt |
|- ( ( ph /\ f e. X_ j e. X ( ( C ` j ) [,) ( D ` j ) ) ) -> sum_ i e. X ( ( ( Y ` i ) - ( f ` i ) ) ^ 2 ) < sum_ i e. X ( ( ( D ` i ) - ( C ` i ) ) ^ 2 ) ) |
128 |
38 61 127
|
syl2anc |
|- ( ( ph /\ f e. X_ i e. X ( ( C ` i ) [,) ( D ` i ) ) ) -> sum_ i e. X ( ( ( Y ` i ) - ( f ` i ) ) ^ 2 ) < sum_ i e. X ( ( ( D ` i ) - ( C ` i ) ) ^ 2 ) ) |
129 |
38 76
|
syl |
|- ( ( ph /\ f e. X_ i e. X ( ( C ` i ) [,) ( D ` i ) ) ) -> sum_ i e. X ( ( ( D ` i ) - ( C ` i ) ) ^ 2 ) e. RR ) |
130 |
38 78
|
syl |
|- ( ( ph /\ f e. X_ i e. X ( ( C ` i ) [,) ( D ` i ) ) ) -> 0 <_ sum_ i e. X ( ( ( D ` i ) - ( C ` i ) ) ^ 2 ) ) |
131 |
54 71 129 130
|
sqrtltd |
|- ( ( ph /\ f e. X_ i e. X ( ( C ` i ) [,) ( D ` i ) ) ) -> ( sum_ i e. X ( ( ( Y ` i ) - ( f ` i ) ) ^ 2 ) < sum_ i e. X ( ( ( D ` i ) - ( C ` i ) ) ^ 2 ) <-> ( sqrt ` sum_ i e. X ( ( ( Y ` i ) - ( f ` i ) ) ^ 2 ) ) < ( sqrt ` sum_ i e. X ( ( ( D ` i ) - ( C ` i ) ) ^ 2 ) ) ) ) |
132 |
128 131
|
mpbid |
|- ( ( ph /\ f e. X_ i e. X ( ( C ` i ) [,) ( D ` i ) ) ) -> ( sqrt ` sum_ i e. X ( ( ( Y ` i ) - ( f ` i ) ) ^ 2 ) ) < ( sqrt ` sum_ i e. X ( ( ( D ` i ) - ( C ` i ) ) ^ 2 ) ) ) |
133 |
33 132
|
eqbrtrd |
|- ( ( ph /\ f e. X_ i e. X ( ( C ` i ) [,) ( D ` i ) ) ) -> ( Y ( dist ` ( RR^ ` X ) ) f ) < ( sqrt ` sum_ i e. X ( ( ( D ` i ) - ( C ` i ) ) ^ 2 ) ) ) |
134 |
81 98
|
rerpdivcld |
|- ( ph -> ( E / ( sqrt ` ( # ` X ) ) ) e. RR ) |
135 |
134
|
resqcld |
|- ( ph -> ( ( E / ( sqrt ` ( # ` X ) ) ) ^ 2 ) e. RR ) |
136 |
135
|
adantr |
|- ( ( ph /\ i e. X ) -> ( ( E / ( sqrt ` ( # ` X ) ) ) ^ 2 ) e. RR ) |
137 |
26 25
|
jca |
|- ( ( ph /\ i e. X ) -> ( ( D ` i ) e. RR /\ ( C ` i ) e. RR ) ) |
138 |
108 103
|
jca |
|- ( ( ph /\ i e. X ) -> ( ( ( Y ` i ) + ( E / ( 2 x. ( sqrt ` ( # ` X ) ) ) ) ) e. RR /\ ( ( Y ` i ) - ( E / ( 2 x. ( sqrt ` ( # ` X ) ) ) ) ) e. RR ) ) |
139 |
137 138
|
jca |
|- ( ( ph /\ i e. X ) -> ( ( ( D ` i ) e. RR /\ ( C ` i ) e. RR ) /\ ( ( ( Y ` i ) + ( E / ( 2 x. ( sqrt ` ( # ` X ) ) ) ) ) e. RR /\ ( ( Y ` i ) - ( E / ( 2 x. ( sqrt ` ( # ` X ) ) ) ) ) e. RR ) ) ) |
140 |
|
iooltub |
|- ( ( ( Y ` i ) e. RR* /\ ( ( Y ` i ) + ( E / ( 2 x. ( sqrt ` ( # ` X ) ) ) ) ) e. RR* /\ ( D ` i ) e. ( ( Y ` i ) (,) ( ( Y ` i ) + ( E / ( 2 x. ( sqrt ` ( # ` X ) ) ) ) ) ) ) -> ( D ` i ) < ( ( Y ` i ) + ( E / ( 2 x. ( sqrt ` ( # ` X ) ) ) ) ) ) |
141 |
89 109 9 140
|
syl3anc |
|- ( ( ph /\ i e. X ) -> ( D ` i ) < ( ( Y ` i ) + ( E / ( 2 x. ( sqrt ` ( # ` X ) ) ) ) ) ) |
142 |
|
ioogtlb |
|- ( ( ( ( Y ` i ) - ( E / ( 2 x. ( sqrt ` ( # ` X ) ) ) ) ) e. RR* /\ ( Y ` i ) e. RR* /\ ( C ` i ) e. ( ( ( Y ` i ) - ( E / ( 2 x. ( sqrt ` ( # ` X ) ) ) ) ) (,) ( Y ` i ) ) ) -> ( ( Y ` i ) - ( E / ( 2 x. ( sqrt ` ( # ` X ) ) ) ) ) < ( C ` i ) ) |
143 |
104 89 8 142
|
syl3anc |
|- ( ( ph /\ i e. X ) -> ( ( Y ` i ) - ( E / ( 2 x. ( sqrt ` ( # ` X ) ) ) ) ) < ( C ` i ) ) |
144 |
141 143
|
jca |
|- ( ( ph /\ i e. X ) -> ( ( D ` i ) < ( ( Y ` i ) + ( E / ( 2 x. ( sqrt ` ( # ` X ) ) ) ) ) /\ ( ( Y ` i ) - ( E / ( 2 x. ( sqrt ` ( # ` X ) ) ) ) ) < ( C ` i ) ) ) |
145 |
|
lt2sub |
|- ( ( ( ( D ` i ) e. RR /\ ( C ` i ) e. RR ) /\ ( ( ( Y ` i ) + ( E / ( 2 x. ( sqrt ` ( # ` X ) ) ) ) ) e. RR /\ ( ( Y ` i ) - ( E / ( 2 x. ( sqrt ` ( # ` X ) ) ) ) ) e. RR ) ) -> ( ( ( D ` i ) < ( ( Y ` i ) + ( E / ( 2 x. ( sqrt ` ( # ` X ) ) ) ) ) /\ ( ( Y ` i ) - ( E / ( 2 x. ( sqrt ` ( # ` X ) ) ) ) ) < ( C ` i ) ) -> ( ( D ` i ) - ( C ` i ) ) < ( ( ( Y ` i ) + ( E / ( 2 x. ( sqrt ` ( # ` X ) ) ) ) ) - ( ( Y ` i ) - ( E / ( 2 x. ( sqrt ` ( # ` X ) ) ) ) ) ) ) ) |
146 |
139 144 145
|
sylc |
|- ( ( ph /\ i e. X ) -> ( ( D ` i ) - ( C ` i ) ) < ( ( ( Y ` i ) + ( E / ( 2 x. ( sqrt ` ( # ` X ) ) ) ) ) - ( ( Y ` i ) - ( E / ( 2 x. ( sqrt ` ( # ` X ) ) ) ) ) ) ) |
147 |
42
|
recnd |
|- ( ( ph /\ i e. X ) -> ( Y ` i ) e. CC ) |
148 |
102
|
recnd |
|- ( ( ph /\ i e. X ) -> ( E / ( 2 x. ( sqrt ` ( # ` X ) ) ) ) e. CC ) |
149 |
147 148 148
|
pnncand |
|- ( ( ph /\ i e. X ) -> ( ( ( Y ` i ) + ( E / ( 2 x. ( sqrt ` ( # ` X ) ) ) ) ) - ( ( Y ` i ) - ( E / ( 2 x. ( sqrt ` ( # ` X ) ) ) ) ) ) = ( ( E / ( 2 x. ( sqrt ` ( # ` X ) ) ) ) + ( E / ( 2 x. ( sqrt ` ( # ` X ) ) ) ) ) ) |
150 |
81
|
recnd |
|- ( ph -> E e. CC ) |
151 |
98
|
rpcnd |
|- ( ph -> ( sqrt ` ( # ` X ) ) e. CC ) |
152 |
|
2cnd |
|- ( ph -> 2 e. CC ) |
153 |
98
|
rpne0d |
|- ( ph -> ( sqrt ` ( # ` X ) ) =/= 0 ) |
154 |
91
|
rpne0d |
|- ( ph -> 2 =/= 0 ) |
155 |
150 151 152 153 154
|
divdiv3d |
|- ( ph -> ( ( E / ( sqrt ` ( # ` X ) ) ) / 2 ) = ( E / ( 2 x. ( sqrt ` ( # ` X ) ) ) ) ) |
156 |
155
|
eqcomd |
|- ( ph -> ( E / ( 2 x. ( sqrt ` ( # ` X ) ) ) ) = ( ( E / ( sqrt ` ( # ` X ) ) ) / 2 ) ) |
157 |
156 156
|
oveq12d |
|- ( ph -> ( ( E / ( 2 x. ( sqrt ` ( # ` X ) ) ) ) + ( E / ( 2 x. ( sqrt ` ( # ` X ) ) ) ) ) = ( ( ( E / ( sqrt ` ( # ` X ) ) ) / 2 ) + ( ( E / ( sqrt ` ( # ` X ) ) ) / 2 ) ) ) |
158 |
150 151 153
|
divcld |
|- ( ph -> ( E / ( sqrt ` ( # ` X ) ) ) e. CC ) |
159 |
158
|
2halvesd |
|- ( ph -> ( ( ( E / ( sqrt ` ( # ` X ) ) ) / 2 ) + ( ( E / ( sqrt ` ( # ` X ) ) ) / 2 ) ) = ( E / ( sqrt ` ( # ` X ) ) ) ) |
160 |
157 159
|
eqtrd |
|- ( ph -> ( ( E / ( 2 x. ( sqrt ` ( # ` X ) ) ) ) + ( E / ( 2 x. ( sqrt ` ( # ` X ) ) ) ) ) = ( E / ( sqrt ` ( # ` X ) ) ) ) |
161 |
160
|
adantr |
|- ( ( ph /\ i e. X ) -> ( ( E / ( 2 x. ( sqrt ` ( # ` X ) ) ) ) + ( E / ( 2 x. ( sqrt ` ( # ` X ) ) ) ) ) = ( E / ( sqrt ` ( # ` X ) ) ) ) |
162 |
149 161
|
eqtrd |
|- ( ( ph /\ i e. X ) -> ( ( ( Y ` i ) + ( E / ( 2 x. ( sqrt ` ( # ` X ) ) ) ) ) - ( ( Y ` i ) - ( E / ( 2 x. ( sqrt ` ( # ` X ) ) ) ) ) ) = ( E / ( sqrt ` ( # ` X ) ) ) ) |
163 |
146 162
|
breqtrd |
|- ( ( ph /\ i e. X ) -> ( ( D ` i ) - ( C ` i ) ) < ( E / ( sqrt ` ( # ` X ) ) ) ) |
164 |
134
|
adantr |
|- ( ( ph /\ i e. X ) -> ( E / ( sqrt ` ( # ` X ) ) ) e. RR ) |
165 |
|
0red |
|- ( ph -> 0 e. RR ) |
166 |
98
|
rpred |
|- ( ph -> ( sqrt ` ( # ` X ) ) e. RR ) |
167 |
7
|
rpgt0d |
|- ( ph -> 0 < E ) |
168 |
98
|
rpgt0d |
|- ( ph -> 0 < ( sqrt ` ( # ` X ) ) ) |
169 |
81 166 167 168
|
divgt0d |
|- ( ph -> 0 < ( E / ( sqrt ` ( # ` X ) ) ) ) |
170 |
165 134 169
|
ltled |
|- ( ph -> 0 <_ ( E / ( sqrt ` ( # ` X ) ) ) ) |
171 |
170
|
adantr |
|- ( ( ph /\ i e. X ) -> 0 <_ ( E / ( sqrt ` ( # ` X ) ) ) ) |
172 |
|
lt2sq |
|- ( ( ( ( ( D ` i ) - ( C ` i ) ) e. RR /\ 0 <_ ( ( D ` i ) - ( C ` i ) ) ) /\ ( ( E / ( sqrt ` ( # ` X ) ) ) e. RR /\ 0 <_ ( E / ( sqrt ` ( # ` X ) ) ) ) ) -> ( ( ( D ` i ) - ( C ` i ) ) < ( E / ( sqrt ` ( # ` X ) ) ) <-> ( ( ( D ` i ) - ( C ` i ) ) ^ 2 ) < ( ( E / ( sqrt ` ( # ` X ) ) ) ^ 2 ) ) ) |
173 |
74 120 164 171 172
|
syl22anc |
|- ( ( ph /\ i e. X ) -> ( ( ( D ` i ) - ( C ` i ) ) < ( E / ( sqrt ` ( # ` X ) ) ) <-> ( ( ( D ` i ) - ( C ` i ) ) ^ 2 ) < ( ( E / ( sqrt ` ( # ` X ) ) ) ^ 2 ) ) ) |
174 |
163 173
|
mpbid |
|- ( ( ph /\ i e. X ) -> ( ( ( D ` i ) - ( C ` i ) ) ^ 2 ) < ( ( E / ( sqrt ` ( # ` X ) ) ) ^ 2 ) ) |
175 |
2 3 75 136 174
|
fsumlt |
|- ( ph -> sum_ i e. X ( ( ( D ` i ) - ( C ` i ) ) ^ 2 ) < sum_ i e. X ( ( E / ( sqrt ` ( # ` X ) ) ) ^ 2 ) ) |
176 |
2 136
|
fsumrecl |
|- ( ph -> sum_ i e. X ( ( E / ( sqrt ` ( # ` X ) ) ) ^ 2 ) e. RR ) |
177 |
164
|
sqge0d |
|- ( ( ph /\ i e. X ) -> 0 <_ ( ( E / ( sqrt ` ( # ` X ) ) ) ^ 2 ) ) |
178 |
2 136 177
|
fsumge0 |
|- ( ph -> 0 <_ sum_ i e. X ( ( E / ( sqrt ` ( # ` X ) ) ) ^ 2 ) ) |
179 |
76 78 176 178
|
sqrtltd |
|- ( ph -> ( sum_ i e. X ( ( ( D ` i ) - ( C ` i ) ) ^ 2 ) < sum_ i e. X ( ( E / ( sqrt ` ( # ` X ) ) ) ^ 2 ) <-> ( sqrt ` sum_ i e. X ( ( ( D ` i ) - ( C ` i ) ) ^ 2 ) ) < ( sqrt ` sum_ i e. X ( ( E / ( sqrt ` ( # ` X ) ) ) ^ 2 ) ) ) ) |
180 |
175 179
|
mpbid |
|- ( ph -> ( sqrt ` sum_ i e. X ( ( ( D ` i ) - ( C ` i ) ) ^ 2 ) ) < ( sqrt ` sum_ i e. X ( ( E / ( sqrt ` ( # ` X ) ) ) ^ 2 ) ) ) |
181 |
135
|
recnd |
|- ( ph -> ( ( E / ( sqrt ` ( # ` X ) ) ) ^ 2 ) e. CC ) |
182 |
|
fsumconst |
|- ( ( X e. Fin /\ ( ( E / ( sqrt ` ( # ` X ) ) ) ^ 2 ) e. CC ) -> sum_ i e. X ( ( E / ( sqrt ` ( # ` X ) ) ) ^ 2 ) = ( ( # ` X ) x. ( ( E / ( sqrt ` ( # ` X ) ) ) ^ 2 ) ) ) |
183 |
2 181 182
|
syl2anc |
|- ( ph -> sum_ i e. X ( ( E / ( sqrt ` ( # ` X ) ) ) ^ 2 ) = ( ( # ` X ) x. ( ( E / ( sqrt ` ( # ` X ) ) ) ^ 2 ) ) ) |
184 |
|
sqdiv |
|- ( ( E e. CC /\ ( sqrt ` ( # ` X ) ) e. CC /\ ( sqrt ` ( # ` X ) ) =/= 0 ) -> ( ( E / ( sqrt ` ( # ` X ) ) ) ^ 2 ) = ( ( E ^ 2 ) / ( ( sqrt ` ( # ` X ) ) ^ 2 ) ) ) |
185 |
150 151 153 184
|
syl3anc |
|- ( ph -> ( ( E / ( sqrt ` ( # ` X ) ) ) ^ 2 ) = ( ( E ^ 2 ) / ( ( sqrt ` ( # ` X ) ) ^ 2 ) ) ) |
186 |
95
|
recnd |
|- ( ph -> ( # ` X ) e. CC ) |
187 |
|
sqrtth |
|- ( ( # ` X ) e. CC -> ( ( sqrt ` ( # ` X ) ) ^ 2 ) = ( # ` X ) ) |
188 |
186 187
|
syl |
|- ( ph -> ( ( sqrt ` ( # ` X ) ) ^ 2 ) = ( # ` X ) ) |
189 |
188
|
oveq2d |
|- ( ph -> ( ( E ^ 2 ) / ( ( sqrt ` ( # ` X ) ) ^ 2 ) ) = ( ( E ^ 2 ) / ( # ` X ) ) ) |
190 |
185 189
|
eqtrd |
|- ( ph -> ( ( E / ( sqrt ` ( # ` X ) ) ) ^ 2 ) = ( ( E ^ 2 ) / ( # ` X ) ) ) |
191 |
190
|
oveq2d |
|- ( ph -> ( ( # ` X ) x. ( ( E / ( sqrt ` ( # ` X ) ) ) ^ 2 ) ) = ( ( # ` X ) x. ( ( E ^ 2 ) / ( # ` X ) ) ) ) |
192 |
150
|
sqcld |
|- ( ph -> ( E ^ 2 ) e. CC ) |
193 |
165 96
|
gtned |
|- ( ph -> ( # ` X ) =/= 0 ) |
194 |
192 186 193
|
divcan2d |
|- ( ph -> ( ( # ` X ) x. ( ( E ^ 2 ) / ( # ` X ) ) ) = ( E ^ 2 ) ) |
195 |
183 191 194
|
3eqtrd |
|- ( ph -> sum_ i e. X ( ( E / ( sqrt ` ( # ` X ) ) ) ^ 2 ) = ( E ^ 2 ) ) |
196 |
195
|
fveq2d |
|- ( ph -> ( sqrt ` sum_ i e. X ( ( E / ( sqrt ` ( # ` X ) ) ) ^ 2 ) ) = ( sqrt ` ( E ^ 2 ) ) ) |
197 |
165 81 167
|
ltled |
|- ( ph -> 0 <_ E ) |
198 |
|
sqrtsq |
|- ( ( E e. RR /\ 0 <_ E ) -> ( sqrt ` ( E ^ 2 ) ) = E ) |
199 |
81 197 198
|
syl2anc |
|- ( ph -> ( sqrt ` ( E ^ 2 ) ) = E ) |
200 |
|
eqidd |
|- ( ph -> E = E ) |
201 |
196 199 200
|
3eqtrd |
|- ( ph -> ( sqrt ` sum_ i e. X ( ( E / ( sqrt ` ( # ` X ) ) ) ^ 2 ) ) = E ) |
202 |
180 201
|
breqtrd |
|- ( ph -> ( sqrt ` sum_ i e. X ( ( ( D ` i ) - ( C ` i ) ) ^ 2 ) ) < E ) |
203 |
202
|
adantr |
|- ( ( ph /\ f e. X_ i e. X ( ( C ` i ) [,) ( D ` i ) ) ) -> ( sqrt ` sum_ i e. X ( ( ( D ` i ) - ( C ` i ) ) ^ 2 ) ) < E ) |
204 |
73 80 82 133 203
|
lttrd |
|- ( ( ph /\ f e. X_ i e. X ( ( C ` i ) [,) ( D ` i ) ) ) -> ( Y ( dist ` ( RR^ ` X ) ) f ) < E ) |
205 |
|
eqid |
|- ( dist ` ( RR^ ` X ) ) = ( dist ` ( RR^ ` X ) ) |
206 |
205
|
rrxmetfi |
|- ( X e. Fin -> ( dist ` ( RR^ ` X ) ) e. ( Met ` ( RR ^m X ) ) ) |
207 |
|
metxmet |
|- ( ( dist ` ( RR^ ` X ) ) e. ( Met ` ( RR ^m X ) ) -> ( dist ` ( RR^ ` X ) ) e. ( *Met ` ( RR ^m X ) ) ) |
208 |
2 206 207
|
3syl |
|- ( ph -> ( dist ` ( RR^ ` X ) ) e. ( *Met ` ( RR ^m X ) ) ) |
209 |
208
|
adantr |
|- ( ( ph /\ f e. X_ i e. X ( ( C ` i ) [,) ( D ` i ) ) ) -> ( dist ` ( RR^ ` X ) ) e. ( *Met ` ( RR ^m X ) ) ) |
210 |
82
|
rexrd |
|- ( ( ph /\ f e. X_ i e. X ( ( C ` i ) [,) ( D ` i ) ) ) -> E e. RR* ) |
211 |
31 11
|
eleqtrdi |
|- ( ( ph /\ f e. X_ i e. X ( ( C ` i ) [,) ( D ` i ) ) ) -> f e. ( RR ^m X ) ) |
212 |
|
elbl2 |
|- ( ( ( ( dist ` ( RR^ ` X ) ) e. ( *Met ` ( RR ^m X ) ) /\ E e. RR* ) /\ ( Y e. ( RR ^m X ) /\ f e. ( RR ^m X ) ) ) -> ( f e. ( Y ( ball ` ( dist ` ( RR^ ` X ) ) ) E ) <-> ( Y ( dist ` ( RR^ ` X ) ) f ) < E ) ) |
213 |
209 210 24 211 212
|
syl22anc |
|- ( ( ph /\ f e. X_ i e. X ( ( C ` i ) [,) ( D ` i ) ) ) -> ( f e. ( Y ( ball ` ( dist ` ( RR^ ` X ) ) ) E ) <-> ( Y ( dist ` ( RR^ ` X ) ) f ) < E ) ) |
214 |
204 213
|
mpbird |
|- ( ( ph /\ f e. X_ i e. X ( ( C ` i ) [,) ( D ` i ) ) ) -> f e. ( Y ( ball ` ( dist ` ( RR^ ` X ) ) ) E ) ) |
215 |
214
|
ralrimiva |
|- ( ph -> A. f e. X_ i e. X ( ( C ` i ) [,) ( D ` i ) ) f e. ( Y ( ball ` ( dist ` ( RR^ ` X ) ) ) E ) ) |
216 |
|
dfss3 |
|- ( X_ i e. X ( ( C ` i ) [,) ( D ` i ) ) C_ ( Y ( ball ` ( dist ` ( RR^ ` X ) ) ) E ) <-> A. f e. X_ i e. X ( ( C ` i ) [,) ( D ` i ) ) f e. ( Y ( ball ` ( dist ` ( RR^ ` X ) ) ) E ) ) |
217 |
215 216
|
sylibr |
|- ( ph -> X_ i e. X ( ( C ` i ) [,) ( D ` i ) ) C_ ( Y ( ball ` ( dist ` ( RR^ ` X ) ) ) E ) ) |