| Step | Hyp | Ref | Expression | 
						
							| 1 |  | hoiqssbllem2.i |  |-  F/ i ph | 
						
							| 2 |  | hoiqssbllem2.x |  |-  ( ph -> X e. Fin ) | 
						
							| 3 |  | hoiqssbllem2.n |  |-  ( ph -> X =/= (/) ) | 
						
							| 4 |  | hoiqssbllem2.y |  |-  ( ph -> Y e. ( RR ^m X ) ) | 
						
							| 5 |  | hoiqssbllem2.c |  |-  ( ph -> C : X --> RR ) | 
						
							| 6 |  | hoiqssbllem2.d |  |-  ( ph -> D : X --> RR ) | 
						
							| 7 |  | hoiqssbllem2.e |  |-  ( ph -> E e. RR+ ) | 
						
							| 8 |  | hoiqssbllem2.l |  |-  ( ( ph /\ i e. X ) -> ( C ` i ) e. ( ( ( Y ` i ) - ( E / ( 2 x. ( sqrt ` ( # ` X ) ) ) ) ) (,) ( Y ` i ) ) ) | 
						
							| 9 |  | hoiqssbllem2.r |  |-  ( ( ph /\ i e. X ) -> ( D ` i ) e. ( ( Y ` i ) (,) ( ( Y ` i ) + ( E / ( 2 x. ( sqrt ` ( # ` X ) ) ) ) ) ) ) | 
						
							| 10 |  | eqid |  |-  ( RR^ ` X ) = ( RR^ ` X ) | 
						
							| 11 |  | eqid |  |-  ( RR ^m X ) = ( RR ^m X ) | 
						
							| 12 | 10 11 | rrxdsfi |  |-  ( X e. Fin -> ( dist ` ( RR^ ` X ) ) = ( g e. ( RR ^m X ) , h e. ( RR ^m X ) |-> ( sqrt ` sum_ i e. X ( ( ( g ` i ) - ( h ` i ) ) ^ 2 ) ) ) ) | 
						
							| 13 | 2 12 | syl |  |-  ( ph -> ( dist ` ( RR^ ` X ) ) = ( g e. ( RR ^m X ) , h e. ( RR ^m X ) |-> ( sqrt ` sum_ i e. X ( ( ( g ` i ) - ( h ` i ) ) ^ 2 ) ) ) ) | 
						
							| 14 | 13 | adantr |  |-  ( ( ph /\ f e. X_ i e. X ( ( C ` i ) [,) ( D ` i ) ) ) -> ( dist ` ( RR^ ` X ) ) = ( g e. ( RR ^m X ) , h e. ( RR ^m X ) |-> ( sqrt ` sum_ i e. X ( ( ( g ` i ) - ( h ` i ) ) ^ 2 ) ) ) ) | 
						
							| 15 |  | fveq1 |  |-  ( g = Y -> ( g ` i ) = ( Y ` i ) ) | 
						
							| 16 | 15 | adantr |  |-  ( ( g = Y /\ h = f ) -> ( g ` i ) = ( Y ` i ) ) | 
						
							| 17 |  | fveq1 |  |-  ( h = f -> ( h ` i ) = ( f ` i ) ) | 
						
							| 18 | 17 | adantl |  |-  ( ( g = Y /\ h = f ) -> ( h ` i ) = ( f ` i ) ) | 
						
							| 19 | 16 18 | oveq12d |  |-  ( ( g = Y /\ h = f ) -> ( ( g ` i ) - ( h ` i ) ) = ( ( Y ` i ) - ( f ` i ) ) ) | 
						
							| 20 | 19 | oveq1d |  |-  ( ( g = Y /\ h = f ) -> ( ( ( g ` i ) - ( h ` i ) ) ^ 2 ) = ( ( ( Y ` i ) - ( f ` i ) ) ^ 2 ) ) | 
						
							| 21 | 20 | sumeq2sdv |  |-  ( ( g = Y /\ h = f ) -> sum_ i e. X ( ( ( g ` i ) - ( h ` i ) ) ^ 2 ) = sum_ i e. X ( ( ( Y ` i ) - ( f ` i ) ) ^ 2 ) ) | 
						
							| 22 | 21 | fveq2d |  |-  ( ( g = Y /\ h = f ) -> ( sqrt ` sum_ i e. X ( ( ( g ` i ) - ( h ` i ) ) ^ 2 ) ) = ( sqrt ` sum_ i e. X ( ( ( Y ` i ) - ( f ` i ) ) ^ 2 ) ) ) | 
						
							| 23 | 22 | adantl |  |-  ( ( ( ph /\ f e. X_ i e. X ( ( C ` i ) [,) ( D ` i ) ) ) /\ ( g = Y /\ h = f ) ) -> ( sqrt ` sum_ i e. X ( ( ( g ` i ) - ( h ` i ) ) ^ 2 ) ) = ( sqrt ` sum_ i e. X ( ( ( Y ` i ) - ( f ` i ) ) ^ 2 ) ) ) | 
						
							| 24 | 4 | adantr |  |-  ( ( ph /\ f e. X_ i e. X ( ( C ` i ) [,) ( D ` i ) ) ) -> Y e. ( RR ^m X ) ) | 
						
							| 25 | 5 | ffvelcdmda |  |-  ( ( ph /\ i e. X ) -> ( C ` i ) e. RR ) | 
						
							| 26 | 6 | ffvelcdmda |  |-  ( ( ph /\ i e. X ) -> ( D ` i ) e. RR ) | 
						
							| 27 | 26 | rexrd |  |-  ( ( ph /\ i e. X ) -> ( D ` i ) e. RR* ) | 
						
							| 28 | 1 25 27 | hoissrrn2 |  |-  ( ph -> X_ i e. X ( ( C ` i ) [,) ( D ` i ) ) C_ ( RR ^m X ) ) | 
						
							| 29 | 28 | adantr |  |-  ( ( ph /\ f e. X_ i e. X ( ( C ` i ) [,) ( D ` i ) ) ) -> X_ i e. X ( ( C ` i ) [,) ( D ` i ) ) C_ ( RR ^m X ) ) | 
						
							| 30 |  | simpr |  |-  ( ( ph /\ f e. X_ i e. X ( ( C ` i ) [,) ( D ` i ) ) ) -> f e. X_ i e. X ( ( C ` i ) [,) ( D ` i ) ) ) | 
						
							| 31 | 29 30 | sseldd |  |-  ( ( ph /\ f e. X_ i e. X ( ( C ` i ) [,) ( D ` i ) ) ) -> f e. ( RR ^m X ) ) | 
						
							| 32 |  | fvexd |  |-  ( ( ph /\ f e. X_ i e. X ( ( C ` i ) [,) ( D ` i ) ) ) -> ( sqrt ` sum_ i e. X ( ( ( Y ` i ) - ( f ` i ) ) ^ 2 ) ) e. _V ) | 
						
							| 33 | 14 23 24 31 32 | ovmpod |  |-  ( ( ph /\ f e. X_ i e. X ( ( C ` i ) [,) ( D ` i ) ) ) -> ( Y ( dist ` ( RR^ ` X ) ) f ) = ( sqrt ` sum_ i e. X ( ( ( Y ` i ) - ( f ` i ) ) ^ 2 ) ) ) | 
						
							| 34 |  | nfcv |  |-  F/_ i f | 
						
							| 35 |  | nfixp1 |  |-  F/_ i X_ i e. X ( ( C ` i ) [,) ( D ` i ) ) | 
						
							| 36 | 34 35 | nfel |  |-  F/ i f e. X_ i e. X ( ( C ` i ) [,) ( D ` i ) ) | 
						
							| 37 | 1 36 | nfan |  |-  F/ i ( ph /\ f e. X_ i e. X ( ( C ` i ) [,) ( D ` i ) ) ) | 
						
							| 38 |  | simpl |  |-  ( ( ph /\ f e. X_ i e. X ( ( C ` i ) [,) ( D ` i ) ) ) -> ph ) | 
						
							| 39 | 38 2 | syl |  |-  ( ( ph /\ f e. X_ i e. X ( ( C ` i ) [,) ( D ` i ) ) ) -> X e. Fin ) | 
						
							| 40 |  | elmapi |  |-  ( Y e. ( RR ^m X ) -> Y : X --> RR ) | 
						
							| 41 | 4 40 | syl |  |-  ( ph -> Y : X --> RR ) | 
						
							| 42 | 41 | ffvelcdmda |  |-  ( ( ph /\ i e. X ) -> ( Y ` i ) e. RR ) | 
						
							| 43 | 38 42 | sylan |  |-  ( ( ( ph /\ f e. X_ i e. X ( ( C ` i ) [,) ( D ` i ) ) ) /\ i e. X ) -> ( Y ` i ) e. RR ) | 
						
							| 44 |  | icossre |  |-  ( ( ( C ` i ) e. RR /\ ( D ` i ) e. RR* ) -> ( ( C ` i ) [,) ( D ` i ) ) C_ RR ) | 
						
							| 45 | 25 27 44 | syl2anc |  |-  ( ( ph /\ i e. X ) -> ( ( C ` i ) [,) ( D ` i ) ) C_ RR ) | 
						
							| 46 | 45 | adantlr |  |-  ( ( ( ph /\ f e. X_ i e. X ( ( C ` i ) [,) ( D ` i ) ) ) /\ i e. X ) -> ( ( C ` i ) [,) ( D ` i ) ) C_ RR ) | 
						
							| 47 |  | fvixp2 |  |-  ( ( f e. X_ i e. X ( ( C ` i ) [,) ( D ` i ) ) /\ i e. X ) -> ( f ` i ) e. ( ( C ` i ) [,) ( D ` i ) ) ) | 
						
							| 48 | 47 | adantll |  |-  ( ( ( ph /\ f e. X_ i e. X ( ( C ` i ) [,) ( D ` i ) ) ) /\ i e. X ) -> ( f ` i ) e. ( ( C ` i ) [,) ( D ` i ) ) ) | 
						
							| 49 | 46 48 | sseldd |  |-  ( ( ( ph /\ f e. X_ i e. X ( ( C ` i ) [,) ( D ` i ) ) ) /\ i e. X ) -> ( f ` i ) e. RR ) | 
						
							| 50 | 43 49 | resubcld |  |-  ( ( ( ph /\ f e. X_ i e. X ( ( C ` i ) [,) ( D ` i ) ) ) /\ i e. X ) -> ( ( Y ` i ) - ( f ` i ) ) e. RR ) | 
						
							| 51 |  | 2nn0 |  |-  2 e. NN0 | 
						
							| 52 | 51 | a1i |  |-  ( ( ( ph /\ f e. X_ i e. X ( ( C ` i ) [,) ( D ` i ) ) ) /\ i e. X ) -> 2 e. NN0 ) | 
						
							| 53 | 50 52 | reexpcld |  |-  ( ( ( ph /\ f e. X_ i e. X ( ( C ` i ) [,) ( D ` i ) ) ) /\ i e. X ) -> ( ( ( Y ` i ) - ( f ` i ) ) ^ 2 ) e. RR ) | 
						
							| 54 | 37 39 53 | fsumreclf |  |-  ( ( ph /\ f e. X_ i e. X ( ( C ` i ) [,) ( D ` i ) ) ) -> sum_ i e. X ( ( ( Y ` i ) - ( f ` i ) ) ^ 2 ) e. RR ) | 
						
							| 55 |  | fveq2 |  |-  ( i = j -> ( C ` i ) = ( C ` j ) ) | 
						
							| 56 |  | fveq2 |  |-  ( i = j -> ( D ` i ) = ( D ` j ) ) | 
						
							| 57 | 55 56 | oveq12d |  |-  ( i = j -> ( ( C ` i ) [,) ( D ` i ) ) = ( ( C ` j ) [,) ( D ` j ) ) ) | 
						
							| 58 | 57 | cbvixpv |  |-  X_ i e. X ( ( C ` i ) [,) ( D ` i ) ) = X_ j e. X ( ( C ` j ) [,) ( D ` j ) ) | 
						
							| 59 | 58 | eleq2i |  |-  ( f e. X_ i e. X ( ( C ` i ) [,) ( D ` i ) ) <-> f e. X_ j e. X ( ( C ` j ) [,) ( D ` j ) ) ) | 
						
							| 60 | 59 | biimpi |  |-  ( f e. X_ i e. X ( ( C ` i ) [,) ( D ` i ) ) -> f e. X_ j e. X ( ( C ` j ) [,) ( D ` j ) ) ) | 
						
							| 61 | 60 | adantl |  |-  ( ( ph /\ f e. X_ i e. X ( ( C ` i ) [,) ( D ` i ) ) ) -> f e. X_ j e. X ( ( C ` j ) [,) ( D ` j ) ) ) | 
						
							| 62 | 2 | adantr |  |-  ( ( ph /\ f e. X_ j e. X ( ( C ` j ) [,) ( D ` j ) ) ) -> X e. Fin ) | 
						
							| 63 |  | simpll |  |-  ( ( ( ph /\ f e. X_ j e. X ( ( C ` j ) [,) ( D ` j ) ) ) /\ i e. X ) -> ph ) | 
						
							| 64 | 59 | biimpri |  |-  ( f e. X_ j e. X ( ( C ` j ) [,) ( D ` j ) ) -> f e. X_ i e. X ( ( C ` i ) [,) ( D ` i ) ) ) | 
						
							| 65 | 64 | ad2antlr |  |-  ( ( ( ph /\ f e. X_ j e. X ( ( C ` j ) [,) ( D ` j ) ) ) /\ i e. X ) -> f e. X_ i e. X ( ( C ` i ) [,) ( D ` i ) ) ) | 
						
							| 66 |  | simpr |  |-  ( ( ( ph /\ f e. X_ j e. X ( ( C ` j ) [,) ( D ` j ) ) ) /\ i e. X ) -> i e. X ) | 
						
							| 67 | 63 65 66 53 | syl21anc |  |-  ( ( ( ph /\ f e. X_ j e. X ( ( C ` j ) [,) ( D ` j ) ) ) /\ i e. X ) -> ( ( ( Y ` i ) - ( f ` i ) ) ^ 2 ) e. RR ) | 
						
							| 68 | 50 | sqge0d |  |-  ( ( ( ph /\ f e. X_ i e. X ( ( C ` i ) [,) ( D ` i ) ) ) /\ i e. X ) -> 0 <_ ( ( ( Y ` i ) - ( f ` i ) ) ^ 2 ) ) | 
						
							| 69 | 63 65 66 68 | syl21anc |  |-  ( ( ( ph /\ f e. X_ j e. X ( ( C ` j ) [,) ( D ` j ) ) ) /\ i e. X ) -> 0 <_ ( ( ( Y ` i ) - ( f ` i ) ) ^ 2 ) ) | 
						
							| 70 | 62 67 69 | fsumge0 |  |-  ( ( ph /\ f e. X_ j e. X ( ( C ` j ) [,) ( D ` j ) ) ) -> 0 <_ sum_ i e. X ( ( ( Y ` i ) - ( f ` i ) ) ^ 2 ) ) | 
						
							| 71 | 38 61 70 | syl2anc |  |-  ( ( ph /\ f e. X_ i e. X ( ( C ` i ) [,) ( D ` i ) ) ) -> 0 <_ sum_ i e. X ( ( ( Y ` i ) - ( f ` i ) ) ^ 2 ) ) | 
						
							| 72 | 54 71 | resqrtcld |  |-  ( ( ph /\ f e. X_ i e. X ( ( C ` i ) [,) ( D ` i ) ) ) -> ( sqrt ` sum_ i e. X ( ( ( Y ` i ) - ( f ` i ) ) ^ 2 ) ) e. RR ) | 
						
							| 73 | 33 72 | eqeltrd |  |-  ( ( ph /\ f e. X_ i e. X ( ( C ` i ) [,) ( D ` i ) ) ) -> ( Y ( dist ` ( RR^ ` X ) ) f ) e. RR ) | 
						
							| 74 | 26 25 | resubcld |  |-  ( ( ph /\ i e. X ) -> ( ( D ` i ) - ( C ` i ) ) e. RR ) | 
						
							| 75 | 74 | resqcld |  |-  ( ( ph /\ i e. X ) -> ( ( ( D ` i ) - ( C ` i ) ) ^ 2 ) e. RR ) | 
						
							| 76 | 2 75 | fsumrecl |  |-  ( ph -> sum_ i e. X ( ( ( D ` i ) - ( C ` i ) ) ^ 2 ) e. RR ) | 
						
							| 77 | 74 | sqge0d |  |-  ( ( ph /\ i e. X ) -> 0 <_ ( ( ( D ` i ) - ( C ` i ) ) ^ 2 ) ) | 
						
							| 78 | 2 75 77 | fsumge0 |  |-  ( ph -> 0 <_ sum_ i e. X ( ( ( D ` i ) - ( C ` i ) ) ^ 2 ) ) | 
						
							| 79 | 76 78 | resqrtcld |  |-  ( ph -> ( sqrt ` sum_ i e. X ( ( ( D ` i ) - ( C ` i ) ) ^ 2 ) ) e. RR ) | 
						
							| 80 | 79 | adantr |  |-  ( ( ph /\ f e. X_ i e. X ( ( C ` i ) [,) ( D ` i ) ) ) -> ( sqrt ` sum_ i e. X ( ( ( D ` i ) - ( C ` i ) ) ^ 2 ) ) e. RR ) | 
						
							| 81 | 7 | rpred |  |-  ( ph -> E e. RR ) | 
						
							| 82 | 81 | adantr |  |-  ( ( ph /\ f e. X_ i e. X ( ( C ` i ) [,) ( D ` i ) ) ) -> E e. RR ) | 
						
							| 83 | 3 | adantr |  |-  ( ( ph /\ f e. X_ j e. X ( ( C ` j ) [,) ( D ` j ) ) ) -> X =/= (/) ) | 
						
							| 84 | 75 | adantlr |  |-  ( ( ( ph /\ f e. X_ j e. X ( ( C ` j ) [,) ( D ` j ) ) ) /\ i e. X ) -> ( ( ( D ` i ) - ( C ` i ) ) ^ 2 ) e. RR ) | 
						
							| 85 | 38 26 | sylan |  |-  ( ( ( ph /\ f e. X_ i e. X ( ( C ` i ) [,) ( D ` i ) ) ) /\ i e. X ) -> ( D ` i ) e. RR ) | 
						
							| 86 | 38 25 | sylan |  |-  ( ( ( ph /\ f e. X_ i e. X ( ( C ` i ) [,) ( D ` i ) ) ) /\ i e. X ) -> ( C ` i ) e. RR ) | 
						
							| 87 | 85 86 | resubcld |  |-  ( ( ( ph /\ f e. X_ i e. X ( ( C ` i ) [,) ( D ` i ) ) ) /\ i e. X ) -> ( ( D ` i ) - ( C ` i ) ) e. RR ) | 
						
							| 88 | 25 | rexrd |  |-  ( ( ph /\ i e. X ) -> ( C ` i ) e. RR* ) | 
						
							| 89 | 42 | rexrd |  |-  ( ( ph /\ i e. X ) -> ( Y ` i ) e. RR* ) | 
						
							| 90 |  | 2rp |  |-  2 e. RR+ | 
						
							| 91 | 90 | a1i |  |-  ( ph -> 2 e. RR+ ) | 
						
							| 92 |  | hashnncl |  |-  ( X e. Fin -> ( ( # ` X ) e. NN <-> X =/= (/) ) ) | 
						
							| 93 | 2 92 | syl |  |-  ( ph -> ( ( # ` X ) e. NN <-> X =/= (/) ) ) | 
						
							| 94 | 3 93 | mpbird |  |-  ( ph -> ( # ` X ) e. NN ) | 
						
							| 95 | 94 | nnred |  |-  ( ph -> ( # ` X ) e. RR ) | 
						
							| 96 | 94 | nngt0d |  |-  ( ph -> 0 < ( # ` X ) ) | 
						
							| 97 | 95 96 | elrpd |  |-  ( ph -> ( # ` X ) e. RR+ ) | 
						
							| 98 | 97 | rpsqrtcld |  |-  ( ph -> ( sqrt ` ( # ` X ) ) e. RR+ ) | 
						
							| 99 | 91 98 | rpmulcld |  |-  ( ph -> ( 2 x. ( sqrt ` ( # ` X ) ) ) e. RR+ ) | 
						
							| 100 | 7 99 | rpdivcld |  |-  ( ph -> ( E / ( 2 x. ( sqrt ` ( # ` X ) ) ) ) e. RR+ ) | 
						
							| 101 | 100 | rpred |  |-  ( ph -> ( E / ( 2 x. ( sqrt ` ( # ` X ) ) ) ) e. RR ) | 
						
							| 102 | 101 | adantr |  |-  ( ( ph /\ i e. X ) -> ( E / ( 2 x. ( sqrt ` ( # ` X ) ) ) ) e. RR ) | 
						
							| 103 | 42 102 | resubcld |  |-  ( ( ph /\ i e. X ) -> ( ( Y ` i ) - ( E / ( 2 x. ( sqrt ` ( # ` X ) ) ) ) ) e. RR ) | 
						
							| 104 | 103 | rexrd |  |-  ( ( ph /\ i e. X ) -> ( ( Y ` i ) - ( E / ( 2 x. ( sqrt ` ( # ` X ) ) ) ) ) e. RR* ) | 
						
							| 105 |  | iooltub |  |-  ( ( ( ( Y ` i ) - ( E / ( 2 x. ( sqrt ` ( # ` X ) ) ) ) ) e. RR* /\ ( Y ` i ) e. RR* /\ ( C ` i ) e. ( ( ( Y ` i ) - ( E / ( 2 x. ( sqrt ` ( # ` X ) ) ) ) ) (,) ( Y ` i ) ) ) -> ( C ` i ) < ( Y ` i ) ) | 
						
							| 106 | 104 89 8 105 | syl3anc |  |-  ( ( ph /\ i e. X ) -> ( C ` i ) < ( Y ` i ) ) | 
						
							| 107 | 25 42 106 | ltled |  |-  ( ( ph /\ i e. X ) -> ( C ` i ) <_ ( Y ` i ) ) | 
						
							| 108 | 42 102 | readdcld |  |-  ( ( ph /\ i e. X ) -> ( ( Y ` i ) + ( E / ( 2 x. ( sqrt ` ( # ` X ) ) ) ) ) e. RR ) | 
						
							| 109 | 108 | rexrd |  |-  ( ( ph /\ i e. X ) -> ( ( Y ` i ) + ( E / ( 2 x. ( sqrt ` ( # ` X ) ) ) ) ) e. RR* ) | 
						
							| 110 |  | ioogtlb |  |-  ( ( ( Y ` i ) e. RR* /\ ( ( Y ` i ) + ( E / ( 2 x. ( sqrt ` ( # ` X ) ) ) ) ) e. RR* /\ ( D ` i ) e. ( ( Y ` i ) (,) ( ( Y ` i ) + ( E / ( 2 x. ( sqrt ` ( # ` X ) ) ) ) ) ) ) -> ( Y ` i ) < ( D ` i ) ) | 
						
							| 111 | 89 109 9 110 | syl3anc |  |-  ( ( ph /\ i e. X ) -> ( Y ` i ) < ( D ` i ) ) | 
						
							| 112 | 88 27 89 107 111 | elicod |  |-  ( ( ph /\ i e. X ) -> ( Y ` i ) e. ( ( C ` i ) [,) ( D ` i ) ) ) | 
						
							| 113 | 38 112 | sylan |  |-  ( ( ( ph /\ f e. X_ i e. X ( ( C ` i ) [,) ( D ` i ) ) ) /\ i e. X ) -> ( Y ` i ) e. ( ( C ` i ) [,) ( D ` i ) ) ) | 
						
							| 114 |  | icodiamlt |  |-  ( ( ( ( C ` i ) e. RR /\ ( D ` i ) e. RR ) /\ ( ( Y ` i ) e. ( ( C ` i ) [,) ( D ` i ) ) /\ ( f ` i ) e. ( ( C ` i ) [,) ( D ` i ) ) ) ) -> ( abs ` ( ( Y ` i ) - ( f ` i ) ) ) < ( ( D ` i ) - ( C ` i ) ) ) | 
						
							| 115 | 86 85 113 48 114 | syl22anc |  |-  ( ( ( ph /\ f e. X_ i e. X ( ( C ` i ) [,) ( D ` i ) ) ) /\ i e. X ) -> ( abs ` ( ( Y ` i ) - ( f ` i ) ) ) < ( ( D ` i ) - ( C ` i ) ) ) | 
						
							| 116 |  | 0red |  |-  ( ( ph /\ i e. X ) -> 0 e. RR ) | 
						
							| 117 | 25 42 26 107 111 | lelttrd |  |-  ( ( ph /\ i e. X ) -> ( C ` i ) < ( D ` i ) ) | 
						
							| 118 | 25 26 | posdifd |  |-  ( ( ph /\ i e. X ) -> ( ( C ` i ) < ( D ` i ) <-> 0 < ( ( D ` i ) - ( C ` i ) ) ) ) | 
						
							| 119 | 117 118 | mpbid |  |-  ( ( ph /\ i e. X ) -> 0 < ( ( D ` i ) - ( C ` i ) ) ) | 
						
							| 120 | 116 74 119 | ltled |  |-  ( ( ph /\ i e. X ) -> 0 <_ ( ( D ` i ) - ( C ` i ) ) ) | 
						
							| 121 | 74 120 | absidd |  |-  ( ( ph /\ i e. X ) -> ( abs ` ( ( D ` i ) - ( C ` i ) ) ) = ( ( D ` i ) - ( C ` i ) ) ) | 
						
							| 122 | 121 | eqcomd |  |-  ( ( ph /\ i e. X ) -> ( ( D ` i ) - ( C ` i ) ) = ( abs ` ( ( D ` i ) - ( C ` i ) ) ) ) | 
						
							| 123 | 122 | adantlr |  |-  ( ( ( ph /\ f e. X_ i e. X ( ( C ` i ) [,) ( D ` i ) ) ) /\ i e. X ) -> ( ( D ` i ) - ( C ` i ) ) = ( abs ` ( ( D ` i ) - ( C ` i ) ) ) ) | 
						
							| 124 | 115 123 | breqtrd |  |-  ( ( ( ph /\ f e. X_ i e. X ( ( C ` i ) [,) ( D ` i ) ) ) /\ i e. X ) -> ( abs ` ( ( Y ` i ) - ( f ` i ) ) ) < ( abs ` ( ( D ` i ) - ( C ` i ) ) ) ) | 
						
							| 125 | 50 87 124 | abslt2sqd |  |-  ( ( ( ph /\ f e. X_ i e. X ( ( C ` i ) [,) ( D ` i ) ) ) /\ i e. X ) -> ( ( ( Y ` i ) - ( f ` i ) ) ^ 2 ) < ( ( ( D ` i ) - ( C ` i ) ) ^ 2 ) ) | 
						
							| 126 | 63 65 66 125 | syl21anc |  |-  ( ( ( ph /\ f e. X_ j e. X ( ( C ` j ) [,) ( D ` j ) ) ) /\ i e. X ) -> ( ( ( Y ` i ) - ( f ` i ) ) ^ 2 ) < ( ( ( D ` i ) - ( C ` i ) ) ^ 2 ) ) | 
						
							| 127 | 62 83 67 84 126 | fsumlt |  |-  ( ( ph /\ f e. X_ j e. X ( ( C ` j ) [,) ( D ` j ) ) ) -> sum_ i e. X ( ( ( Y ` i ) - ( f ` i ) ) ^ 2 ) < sum_ i e. X ( ( ( D ` i ) - ( C ` i ) ) ^ 2 ) ) | 
						
							| 128 | 38 61 127 | syl2anc |  |-  ( ( ph /\ f e. X_ i e. X ( ( C ` i ) [,) ( D ` i ) ) ) -> sum_ i e. X ( ( ( Y ` i ) - ( f ` i ) ) ^ 2 ) < sum_ i e. X ( ( ( D ` i ) - ( C ` i ) ) ^ 2 ) ) | 
						
							| 129 | 38 76 | syl |  |-  ( ( ph /\ f e. X_ i e. X ( ( C ` i ) [,) ( D ` i ) ) ) -> sum_ i e. X ( ( ( D ` i ) - ( C ` i ) ) ^ 2 ) e. RR ) | 
						
							| 130 | 38 78 | syl |  |-  ( ( ph /\ f e. X_ i e. X ( ( C ` i ) [,) ( D ` i ) ) ) -> 0 <_ sum_ i e. X ( ( ( D ` i ) - ( C ` i ) ) ^ 2 ) ) | 
						
							| 131 | 54 71 129 130 | sqrtltd |  |-  ( ( ph /\ f e. X_ i e. X ( ( C ` i ) [,) ( D ` i ) ) ) -> ( sum_ i e. X ( ( ( Y ` i ) - ( f ` i ) ) ^ 2 ) < sum_ i e. X ( ( ( D ` i ) - ( C ` i ) ) ^ 2 ) <-> ( sqrt ` sum_ i e. X ( ( ( Y ` i ) - ( f ` i ) ) ^ 2 ) ) < ( sqrt ` sum_ i e. X ( ( ( D ` i ) - ( C ` i ) ) ^ 2 ) ) ) ) | 
						
							| 132 | 128 131 | mpbid |  |-  ( ( ph /\ f e. X_ i e. X ( ( C ` i ) [,) ( D ` i ) ) ) -> ( sqrt ` sum_ i e. X ( ( ( Y ` i ) - ( f ` i ) ) ^ 2 ) ) < ( sqrt ` sum_ i e. X ( ( ( D ` i ) - ( C ` i ) ) ^ 2 ) ) ) | 
						
							| 133 | 33 132 | eqbrtrd |  |-  ( ( ph /\ f e. X_ i e. X ( ( C ` i ) [,) ( D ` i ) ) ) -> ( Y ( dist ` ( RR^ ` X ) ) f ) < ( sqrt ` sum_ i e. X ( ( ( D ` i ) - ( C ` i ) ) ^ 2 ) ) ) | 
						
							| 134 | 81 98 | rerpdivcld |  |-  ( ph -> ( E / ( sqrt ` ( # ` X ) ) ) e. RR ) | 
						
							| 135 | 134 | resqcld |  |-  ( ph -> ( ( E / ( sqrt ` ( # ` X ) ) ) ^ 2 ) e. RR ) | 
						
							| 136 | 135 | adantr |  |-  ( ( ph /\ i e. X ) -> ( ( E / ( sqrt ` ( # ` X ) ) ) ^ 2 ) e. RR ) | 
						
							| 137 | 26 25 | jca |  |-  ( ( ph /\ i e. X ) -> ( ( D ` i ) e. RR /\ ( C ` i ) e. RR ) ) | 
						
							| 138 | 108 103 | jca |  |-  ( ( ph /\ i e. X ) -> ( ( ( Y ` i ) + ( E / ( 2 x. ( sqrt ` ( # ` X ) ) ) ) ) e. RR /\ ( ( Y ` i ) - ( E / ( 2 x. ( sqrt ` ( # ` X ) ) ) ) ) e. RR ) ) | 
						
							| 139 | 137 138 | jca |  |-  ( ( ph /\ i e. X ) -> ( ( ( D ` i ) e. RR /\ ( C ` i ) e. RR ) /\ ( ( ( Y ` i ) + ( E / ( 2 x. ( sqrt ` ( # ` X ) ) ) ) ) e. RR /\ ( ( Y ` i ) - ( E / ( 2 x. ( sqrt ` ( # ` X ) ) ) ) ) e. RR ) ) ) | 
						
							| 140 |  | iooltub |  |-  ( ( ( Y ` i ) e. RR* /\ ( ( Y ` i ) + ( E / ( 2 x. ( sqrt ` ( # ` X ) ) ) ) ) e. RR* /\ ( D ` i ) e. ( ( Y ` i ) (,) ( ( Y ` i ) + ( E / ( 2 x. ( sqrt ` ( # ` X ) ) ) ) ) ) ) -> ( D ` i ) < ( ( Y ` i ) + ( E / ( 2 x. ( sqrt ` ( # ` X ) ) ) ) ) ) | 
						
							| 141 | 89 109 9 140 | syl3anc |  |-  ( ( ph /\ i e. X ) -> ( D ` i ) < ( ( Y ` i ) + ( E / ( 2 x. ( sqrt ` ( # ` X ) ) ) ) ) ) | 
						
							| 142 |  | ioogtlb |  |-  ( ( ( ( Y ` i ) - ( E / ( 2 x. ( sqrt ` ( # ` X ) ) ) ) ) e. RR* /\ ( Y ` i ) e. RR* /\ ( C ` i ) e. ( ( ( Y ` i ) - ( E / ( 2 x. ( sqrt ` ( # ` X ) ) ) ) ) (,) ( Y ` i ) ) ) -> ( ( Y ` i ) - ( E / ( 2 x. ( sqrt ` ( # ` X ) ) ) ) ) < ( C ` i ) ) | 
						
							| 143 | 104 89 8 142 | syl3anc |  |-  ( ( ph /\ i e. X ) -> ( ( Y ` i ) - ( E / ( 2 x. ( sqrt ` ( # ` X ) ) ) ) ) < ( C ` i ) ) | 
						
							| 144 | 141 143 | jca |  |-  ( ( ph /\ i e. X ) -> ( ( D ` i ) < ( ( Y ` i ) + ( E / ( 2 x. ( sqrt ` ( # ` X ) ) ) ) ) /\ ( ( Y ` i ) - ( E / ( 2 x. ( sqrt ` ( # ` X ) ) ) ) ) < ( C ` i ) ) ) | 
						
							| 145 |  | lt2sub |  |-  ( ( ( ( D ` i ) e. RR /\ ( C ` i ) e. RR ) /\ ( ( ( Y ` i ) + ( E / ( 2 x. ( sqrt ` ( # ` X ) ) ) ) ) e. RR /\ ( ( Y ` i ) - ( E / ( 2 x. ( sqrt ` ( # ` X ) ) ) ) ) e. RR ) ) -> ( ( ( D ` i ) < ( ( Y ` i ) + ( E / ( 2 x. ( sqrt ` ( # ` X ) ) ) ) ) /\ ( ( Y ` i ) - ( E / ( 2 x. ( sqrt ` ( # ` X ) ) ) ) ) < ( C ` i ) ) -> ( ( D ` i ) - ( C ` i ) ) < ( ( ( Y ` i ) + ( E / ( 2 x. ( sqrt ` ( # ` X ) ) ) ) ) - ( ( Y ` i ) - ( E / ( 2 x. ( sqrt ` ( # ` X ) ) ) ) ) ) ) ) | 
						
							| 146 | 139 144 145 | sylc |  |-  ( ( ph /\ i e. X ) -> ( ( D ` i ) - ( C ` i ) ) < ( ( ( Y ` i ) + ( E / ( 2 x. ( sqrt ` ( # ` X ) ) ) ) ) - ( ( Y ` i ) - ( E / ( 2 x. ( sqrt ` ( # ` X ) ) ) ) ) ) ) | 
						
							| 147 | 42 | recnd |  |-  ( ( ph /\ i e. X ) -> ( Y ` i ) e. CC ) | 
						
							| 148 | 102 | recnd |  |-  ( ( ph /\ i e. X ) -> ( E / ( 2 x. ( sqrt ` ( # ` X ) ) ) ) e. CC ) | 
						
							| 149 | 147 148 148 | pnncand |  |-  ( ( ph /\ i e. X ) -> ( ( ( Y ` i ) + ( E / ( 2 x. ( sqrt ` ( # ` X ) ) ) ) ) - ( ( Y ` i ) - ( E / ( 2 x. ( sqrt ` ( # ` X ) ) ) ) ) ) = ( ( E / ( 2 x. ( sqrt ` ( # ` X ) ) ) ) + ( E / ( 2 x. ( sqrt ` ( # ` X ) ) ) ) ) ) | 
						
							| 150 | 81 | recnd |  |-  ( ph -> E e. CC ) | 
						
							| 151 | 98 | rpcnd |  |-  ( ph -> ( sqrt ` ( # ` X ) ) e. CC ) | 
						
							| 152 |  | 2cnd |  |-  ( ph -> 2 e. CC ) | 
						
							| 153 | 98 | rpne0d |  |-  ( ph -> ( sqrt ` ( # ` X ) ) =/= 0 ) | 
						
							| 154 | 91 | rpne0d |  |-  ( ph -> 2 =/= 0 ) | 
						
							| 155 | 150 151 152 153 154 | divdiv3d |  |-  ( ph -> ( ( E / ( sqrt ` ( # ` X ) ) ) / 2 ) = ( E / ( 2 x. ( sqrt ` ( # ` X ) ) ) ) ) | 
						
							| 156 | 155 | eqcomd |  |-  ( ph -> ( E / ( 2 x. ( sqrt ` ( # ` X ) ) ) ) = ( ( E / ( sqrt ` ( # ` X ) ) ) / 2 ) ) | 
						
							| 157 | 156 156 | oveq12d |  |-  ( ph -> ( ( E / ( 2 x. ( sqrt ` ( # ` X ) ) ) ) + ( E / ( 2 x. ( sqrt ` ( # ` X ) ) ) ) ) = ( ( ( E / ( sqrt ` ( # ` X ) ) ) / 2 ) + ( ( E / ( sqrt ` ( # ` X ) ) ) / 2 ) ) ) | 
						
							| 158 | 150 151 153 | divcld |  |-  ( ph -> ( E / ( sqrt ` ( # ` X ) ) ) e. CC ) | 
						
							| 159 | 158 | 2halvesd |  |-  ( ph -> ( ( ( E / ( sqrt ` ( # ` X ) ) ) / 2 ) + ( ( E / ( sqrt ` ( # ` X ) ) ) / 2 ) ) = ( E / ( sqrt ` ( # ` X ) ) ) ) | 
						
							| 160 | 157 159 | eqtrd |  |-  ( ph -> ( ( E / ( 2 x. ( sqrt ` ( # ` X ) ) ) ) + ( E / ( 2 x. ( sqrt ` ( # ` X ) ) ) ) ) = ( E / ( sqrt ` ( # ` X ) ) ) ) | 
						
							| 161 | 160 | adantr |  |-  ( ( ph /\ i e. X ) -> ( ( E / ( 2 x. ( sqrt ` ( # ` X ) ) ) ) + ( E / ( 2 x. ( sqrt ` ( # ` X ) ) ) ) ) = ( E / ( sqrt ` ( # ` X ) ) ) ) | 
						
							| 162 | 149 161 | eqtrd |  |-  ( ( ph /\ i e. X ) -> ( ( ( Y ` i ) + ( E / ( 2 x. ( sqrt ` ( # ` X ) ) ) ) ) - ( ( Y ` i ) - ( E / ( 2 x. ( sqrt ` ( # ` X ) ) ) ) ) ) = ( E / ( sqrt ` ( # ` X ) ) ) ) | 
						
							| 163 | 146 162 | breqtrd |  |-  ( ( ph /\ i e. X ) -> ( ( D ` i ) - ( C ` i ) ) < ( E / ( sqrt ` ( # ` X ) ) ) ) | 
						
							| 164 | 134 | adantr |  |-  ( ( ph /\ i e. X ) -> ( E / ( sqrt ` ( # ` X ) ) ) e. RR ) | 
						
							| 165 |  | 0red |  |-  ( ph -> 0 e. RR ) | 
						
							| 166 | 98 | rpred |  |-  ( ph -> ( sqrt ` ( # ` X ) ) e. RR ) | 
						
							| 167 | 7 | rpgt0d |  |-  ( ph -> 0 < E ) | 
						
							| 168 | 98 | rpgt0d |  |-  ( ph -> 0 < ( sqrt ` ( # ` X ) ) ) | 
						
							| 169 | 81 166 167 168 | divgt0d |  |-  ( ph -> 0 < ( E / ( sqrt ` ( # ` X ) ) ) ) | 
						
							| 170 | 165 134 169 | ltled |  |-  ( ph -> 0 <_ ( E / ( sqrt ` ( # ` X ) ) ) ) | 
						
							| 171 | 170 | adantr |  |-  ( ( ph /\ i e. X ) -> 0 <_ ( E / ( sqrt ` ( # ` X ) ) ) ) | 
						
							| 172 |  | lt2sq |  |-  ( ( ( ( ( D ` i ) - ( C ` i ) ) e. RR /\ 0 <_ ( ( D ` i ) - ( C ` i ) ) ) /\ ( ( E / ( sqrt ` ( # ` X ) ) ) e. RR /\ 0 <_ ( E / ( sqrt ` ( # ` X ) ) ) ) ) -> ( ( ( D ` i ) - ( C ` i ) ) < ( E / ( sqrt ` ( # ` X ) ) ) <-> ( ( ( D ` i ) - ( C ` i ) ) ^ 2 ) < ( ( E / ( sqrt ` ( # ` X ) ) ) ^ 2 ) ) ) | 
						
							| 173 | 74 120 164 171 172 | syl22anc |  |-  ( ( ph /\ i e. X ) -> ( ( ( D ` i ) - ( C ` i ) ) < ( E / ( sqrt ` ( # ` X ) ) ) <-> ( ( ( D ` i ) - ( C ` i ) ) ^ 2 ) < ( ( E / ( sqrt ` ( # ` X ) ) ) ^ 2 ) ) ) | 
						
							| 174 | 163 173 | mpbid |  |-  ( ( ph /\ i e. X ) -> ( ( ( D ` i ) - ( C ` i ) ) ^ 2 ) < ( ( E / ( sqrt ` ( # ` X ) ) ) ^ 2 ) ) | 
						
							| 175 | 2 3 75 136 174 | fsumlt |  |-  ( ph -> sum_ i e. X ( ( ( D ` i ) - ( C ` i ) ) ^ 2 ) < sum_ i e. X ( ( E / ( sqrt ` ( # ` X ) ) ) ^ 2 ) ) | 
						
							| 176 | 2 136 | fsumrecl |  |-  ( ph -> sum_ i e. X ( ( E / ( sqrt ` ( # ` X ) ) ) ^ 2 ) e. RR ) | 
						
							| 177 | 164 | sqge0d |  |-  ( ( ph /\ i e. X ) -> 0 <_ ( ( E / ( sqrt ` ( # ` X ) ) ) ^ 2 ) ) | 
						
							| 178 | 2 136 177 | fsumge0 |  |-  ( ph -> 0 <_ sum_ i e. X ( ( E / ( sqrt ` ( # ` X ) ) ) ^ 2 ) ) | 
						
							| 179 | 76 78 176 178 | sqrtltd |  |-  ( ph -> ( sum_ i e. X ( ( ( D ` i ) - ( C ` i ) ) ^ 2 ) < sum_ i e. X ( ( E / ( sqrt ` ( # ` X ) ) ) ^ 2 ) <-> ( sqrt ` sum_ i e. X ( ( ( D ` i ) - ( C ` i ) ) ^ 2 ) ) < ( sqrt ` sum_ i e. X ( ( E / ( sqrt ` ( # ` X ) ) ) ^ 2 ) ) ) ) | 
						
							| 180 | 175 179 | mpbid |  |-  ( ph -> ( sqrt ` sum_ i e. X ( ( ( D ` i ) - ( C ` i ) ) ^ 2 ) ) < ( sqrt ` sum_ i e. X ( ( E / ( sqrt ` ( # ` X ) ) ) ^ 2 ) ) ) | 
						
							| 181 | 135 | recnd |  |-  ( ph -> ( ( E / ( sqrt ` ( # ` X ) ) ) ^ 2 ) e. CC ) | 
						
							| 182 |  | fsumconst |  |-  ( ( X e. Fin /\ ( ( E / ( sqrt ` ( # ` X ) ) ) ^ 2 ) e. CC ) -> sum_ i e. X ( ( E / ( sqrt ` ( # ` X ) ) ) ^ 2 ) = ( ( # ` X ) x. ( ( E / ( sqrt ` ( # ` X ) ) ) ^ 2 ) ) ) | 
						
							| 183 | 2 181 182 | syl2anc |  |-  ( ph -> sum_ i e. X ( ( E / ( sqrt ` ( # ` X ) ) ) ^ 2 ) = ( ( # ` X ) x. ( ( E / ( sqrt ` ( # ` X ) ) ) ^ 2 ) ) ) | 
						
							| 184 |  | sqdiv |  |-  ( ( E e. CC /\ ( sqrt ` ( # ` X ) ) e. CC /\ ( sqrt ` ( # ` X ) ) =/= 0 ) -> ( ( E / ( sqrt ` ( # ` X ) ) ) ^ 2 ) = ( ( E ^ 2 ) / ( ( sqrt ` ( # ` X ) ) ^ 2 ) ) ) | 
						
							| 185 | 150 151 153 184 | syl3anc |  |-  ( ph -> ( ( E / ( sqrt ` ( # ` X ) ) ) ^ 2 ) = ( ( E ^ 2 ) / ( ( sqrt ` ( # ` X ) ) ^ 2 ) ) ) | 
						
							| 186 | 95 | recnd |  |-  ( ph -> ( # ` X ) e. CC ) | 
						
							| 187 |  | sqrtth |  |-  ( ( # ` X ) e. CC -> ( ( sqrt ` ( # ` X ) ) ^ 2 ) = ( # ` X ) ) | 
						
							| 188 | 186 187 | syl |  |-  ( ph -> ( ( sqrt ` ( # ` X ) ) ^ 2 ) = ( # ` X ) ) | 
						
							| 189 | 188 | oveq2d |  |-  ( ph -> ( ( E ^ 2 ) / ( ( sqrt ` ( # ` X ) ) ^ 2 ) ) = ( ( E ^ 2 ) / ( # ` X ) ) ) | 
						
							| 190 | 185 189 | eqtrd |  |-  ( ph -> ( ( E / ( sqrt ` ( # ` X ) ) ) ^ 2 ) = ( ( E ^ 2 ) / ( # ` X ) ) ) | 
						
							| 191 | 190 | oveq2d |  |-  ( ph -> ( ( # ` X ) x. ( ( E / ( sqrt ` ( # ` X ) ) ) ^ 2 ) ) = ( ( # ` X ) x. ( ( E ^ 2 ) / ( # ` X ) ) ) ) | 
						
							| 192 | 150 | sqcld |  |-  ( ph -> ( E ^ 2 ) e. CC ) | 
						
							| 193 | 165 96 | gtned |  |-  ( ph -> ( # ` X ) =/= 0 ) | 
						
							| 194 | 192 186 193 | divcan2d |  |-  ( ph -> ( ( # ` X ) x. ( ( E ^ 2 ) / ( # ` X ) ) ) = ( E ^ 2 ) ) | 
						
							| 195 | 183 191 194 | 3eqtrd |  |-  ( ph -> sum_ i e. X ( ( E / ( sqrt ` ( # ` X ) ) ) ^ 2 ) = ( E ^ 2 ) ) | 
						
							| 196 | 195 | fveq2d |  |-  ( ph -> ( sqrt ` sum_ i e. X ( ( E / ( sqrt ` ( # ` X ) ) ) ^ 2 ) ) = ( sqrt ` ( E ^ 2 ) ) ) | 
						
							| 197 | 165 81 167 | ltled |  |-  ( ph -> 0 <_ E ) | 
						
							| 198 |  | sqrtsq |  |-  ( ( E e. RR /\ 0 <_ E ) -> ( sqrt ` ( E ^ 2 ) ) = E ) | 
						
							| 199 | 81 197 198 | syl2anc |  |-  ( ph -> ( sqrt ` ( E ^ 2 ) ) = E ) | 
						
							| 200 |  | eqidd |  |-  ( ph -> E = E ) | 
						
							| 201 | 196 199 200 | 3eqtrd |  |-  ( ph -> ( sqrt ` sum_ i e. X ( ( E / ( sqrt ` ( # ` X ) ) ) ^ 2 ) ) = E ) | 
						
							| 202 | 180 201 | breqtrd |  |-  ( ph -> ( sqrt ` sum_ i e. X ( ( ( D ` i ) - ( C ` i ) ) ^ 2 ) ) < E ) | 
						
							| 203 | 202 | adantr |  |-  ( ( ph /\ f e. X_ i e. X ( ( C ` i ) [,) ( D ` i ) ) ) -> ( sqrt ` sum_ i e. X ( ( ( D ` i ) - ( C ` i ) ) ^ 2 ) ) < E ) | 
						
							| 204 | 73 80 82 133 203 | lttrd |  |-  ( ( ph /\ f e. X_ i e. X ( ( C ` i ) [,) ( D ` i ) ) ) -> ( Y ( dist ` ( RR^ ` X ) ) f ) < E ) | 
						
							| 205 |  | eqid |  |-  ( dist ` ( RR^ ` X ) ) = ( dist ` ( RR^ ` X ) ) | 
						
							| 206 | 205 | rrxmetfi |  |-  ( X e. Fin -> ( dist ` ( RR^ ` X ) ) e. ( Met ` ( RR ^m X ) ) ) | 
						
							| 207 |  | metxmet |  |-  ( ( dist ` ( RR^ ` X ) ) e. ( Met ` ( RR ^m X ) ) -> ( dist ` ( RR^ ` X ) ) e. ( *Met ` ( RR ^m X ) ) ) | 
						
							| 208 | 2 206 207 | 3syl |  |-  ( ph -> ( dist ` ( RR^ ` X ) ) e. ( *Met ` ( RR ^m X ) ) ) | 
						
							| 209 | 208 | adantr |  |-  ( ( ph /\ f e. X_ i e. X ( ( C ` i ) [,) ( D ` i ) ) ) -> ( dist ` ( RR^ ` X ) ) e. ( *Met ` ( RR ^m X ) ) ) | 
						
							| 210 | 82 | rexrd |  |-  ( ( ph /\ f e. X_ i e. X ( ( C ` i ) [,) ( D ` i ) ) ) -> E e. RR* ) | 
						
							| 211 | 31 11 | eleqtrdi |  |-  ( ( ph /\ f e. X_ i e. X ( ( C ` i ) [,) ( D ` i ) ) ) -> f e. ( RR ^m X ) ) | 
						
							| 212 |  | elbl2 |  |-  ( ( ( ( dist ` ( RR^ ` X ) ) e. ( *Met ` ( RR ^m X ) ) /\ E e. RR* ) /\ ( Y e. ( RR ^m X ) /\ f e. ( RR ^m X ) ) ) -> ( f e. ( Y ( ball ` ( dist ` ( RR^ ` X ) ) ) E ) <-> ( Y ( dist ` ( RR^ ` X ) ) f ) < E ) ) | 
						
							| 213 | 209 210 24 211 212 | syl22anc |  |-  ( ( ph /\ f e. X_ i e. X ( ( C ` i ) [,) ( D ` i ) ) ) -> ( f e. ( Y ( ball ` ( dist ` ( RR^ ` X ) ) ) E ) <-> ( Y ( dist ` ( RR^ ` X ) ) f ) < E ) ) | 
						
							| 214 | 204 213 | mpbird |  |-  ( ( ph /\ f e. X_ i e. X ( ( C ` i ) [,) ( D ` i ) ) ) -> f e. ( Y ( ball ` ( dist ` ( RR^ ` X ) ) ) E ) ) | 
						
							| 215 | 214 | ralrimiva |  |-  ( ph -> A. f e. X_ i e. X ( ( C ` i ) [,) ( D ` i ) ) f e. ( Y ( ball ` ( dist ` ( RR^ ` X ) ) ) E ) ) | 
						
							| 216 |  | dfss3 |  |-  ( X_ i e. X ( ( C ` i ) [,) ( D ` i ) ) C_ ( Y ( ball ` ( dist ` ( RR^ ` X ) ) ) E ) <-> A. f e. X_ i e. X ( ( C ` i ) [,) ( D ` i ) ) f e. ( Y ( ball ` ( dist ` ( RR^ ` X ) ) ) E ) ) | 
						
							| 217 | 215 216 | sylibr |  |-  ( ph -> X_ i e. X ( ( C ` i ) [,) ( D ` i ) ) C_ ( Y ( ball ` ( dist ` ( RR^ ` X ) ) ) E ) ) |