| Step |
Hyp |
Ref |
Expression |
| 1 |
|
iccssre |
|- ( ( A e. RR /\ B e. RR ) -> ( A [,] B ) C_ RR ) |
| 2 |
|
ax-resscn |
|- RR C_ CC |
| 3 |
1 2
|
sstrdi |
|- ( ( A e. RR /\ B e. RR ) -> ( A [,] B ) C_ CC ) |
| 4 |
3
|
sselda |
|- ( ( ( A e. RR /\ B e. RR ) /\ x e. ( A [,] B ) ) -> x e. CC ) |
| 5 |
4
|
3adantl3 |
|- ( ( ( A e. RR /\ B e. RR /\ N e. NN0 ) /\ x e. ( A [,] B ) ) -> x e. CC ) |
| 6 |
5
|
sincld |
|- ( ( ( A e. RR /\ B e. RR /\ N e. NN0 ) /\ x e. ( A [,] B ) ) -> ( sin ` x ) e. CC ) |
| 7 |
|
simpl3 |
|- ( ( ( A e. RR /\ B e. RR /\ N e. NN0 ) /\ x e. ( A [,] B ) ) -> N e. NN0 ) |
| 8 |
6 7
|
expcld |
|- ( ( ( A e. RR /\ B e. RR /\ N e. NN0 ) /\ x e. ( A [,] B ) ) -> ( ( sin ` x ) ^ N ) e. CC ) |
| 9 |
|
eqid |
|- ( x e. CC |-> ( ( sin ` x ) ^ N ) ) = ( x e. CC |-> ( ( sin ` x ) ^ N ) ) |
| 10 |
9
|
fvmpt2 |
|- ( ( x e. CC /\ ( ( sin ` x ) ^ N ) e. CC ) -> ( ( x e. CC |-> ( ( sin ` x ) ^ N ) ) ` x ) = ( ( sin ` x ) ^ N ) ) |
| 11 |
5 8 10
|
syl2anc |
|- ( ( ( A e. RR /\ B e. RR /\ N e. NN0 ) /\ x e. ( A [,] B ) ) -> ( ( x e. CC |-> ( ( sin ` x ) ^ N ) ) ` x ) = ( ( sin ` x ) ^ N ) ) |
| 12 |
11
|
eqcomd |
|- ( ( ( A e. RR /\ B e. RR /\ N e. NN0 ) /\ x e. ( A [,] B ) ) -> ( ( sin ` x ) ^ N ) = ( ( x e. CC |-> ( ( sin ` x ) ^ N ) ) ` x ) ) |
| 13 |
12
|
mpteq2dva |
|- ( ( A e. RR /\ B e. RR /\ N e. NN0 ) -> ( x e. ( A [,] B ) |-> ( ( sin ` x ) ^ N ) ) = ( x e. ( A [,] B ) |-> ( ( x e. CC |-> ( ( sin ` x ) ^ N ) ) ` x ) ) ) |
| 14 |
|
nfmpt1 |
|- F/_ x ( x e. CC |-> ( ( sin ` x ) ^ N ) ) |
| 15 |
|
nfcv |
|- F/_ x sin |
| 16 |
|
sincn |
|- sin e. ( CC -cn-> CC ) |
| 17 |
16
|
a1i |
|- ( ( A e. RR /\ B e. RR /\ N e. NN0 ) -> sin e. ( CC -cn-> CC ) ) |
| 18 |
|
simp3 |
|- ( ( A e. RR /\ B e. RR /\ N e. NN0 ) -> N e. NN0 ) |
| 19 |
15 17 18
|
expcnfg |
|- ( ( A e. RR /\ B e. RR /\ N e. NN0 ) -> ( x e. CC |-> ( ( sin ` x ) ^ N ) ) e. ( CC -cn-> CC ) ) |
| 20 |
3
|
3adant3 |
|- ( ( A e. RR /\ B e. RR /\ N e. NN0 ) -> ( A [,] B ) C_ CC ) |
| 21 |
14 19 20
|
cncfmptss |
|- ( ( A e. RR /\ B e. RR /\ N e. NN0 ) -> ( x e. ( A [,] B ) |-> ( ( x e. CC |-> ( ( sin ` x ) ^ N ) ) ` x ) ) e. ( ( A [,] B ) -cn-> CC ) ) |
| 22 |
13 21
|
eqeltrd |
|- ( ( A e. RR /\ B e. RR /\ N e. NN0 ) -> ( x e. ( A [,] B ) |-> ( ( sin ` x ) ^ N ) ) e. ( ( A [,] B ) -cn-> CC ) ) |
| 23 |
|
cniccibl |
|- ( ( A e. RR /\ B e. RR /\ ( x e. ( A [,] B ) |-> ( ( sin ` x ) ^ N ) ) e. ( ( A [,] B ) -cn-> CC ) ) -> ( x e. ( A [,] B ) |-> ( ( sin ` x ) ^ N ) ) e. L^1 ) |
| 24 |
22 23
|
syld3an3 |
|- ( ( A e. RR /\ B e. RR /\ N e. NN0 ) -> ( x e. ( A [,] B ) |-> ( ( sin ` x ) ^ N ) ) e. L^1 ) |