| Step | Hyp | Ref | Expression | 
						
							| 1 |  | iccssre | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  →  ( 𝐴 [,] 𝐵 )  ⊆  ℝ ) | 
						
							| 2 |  | ax-resscn | ⊢ ℝ  ⊆  ℂ | 
						
							| 3 | 1 2 | sstrdi | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  →  ( 𝐴 [,] 𝐵 )  ⊆  ℂ ) | 
						
							| 4 | 3 | sselda | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  ∧  𝑥  ∈  ( 𝐴 [,] 𝐵 ) )  →  𝑥  ∈  ℂ ) | 
						
							| 5 | 4 | 3adantl3 | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ  ∧  𝑁  ∈  ℕ0 )  ∧  𝑥  ∈  ( 𝐴 [,] 𝐵 ) )  →  𝑥  ∈  ℂ ) | 
						
							| 6 | 5 | sincld | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ  ∧  𝑁  ∈  ℕ0 )  ∧  𝑥  ∈  ( 𝐴 [,] 𝐵 ) )  →  ( sin ‘ 𝑥 )  ∈  ℂ ) | 
						
							| 7 |  | simpl3 | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ  ∧  𝑁  ∈  ℕ0 )  ∧  𝑥  ∈  ( 𝐴 [,] 𝐵 ) )  →  𝑁  ∈  ℕ0 ) | 
						
							| 8 | 6 7 | expcld | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ  ∧  𝑁  ∈  ℕ0 )  ∧  𝑥  ∈  ( 𝐴 [,] 𝐵 ) )  →  ( ( sin ‘ 𝑥 ) ↑ 𝑁 )  ∈  ℂ ) | 
						
							| 9 |  | eqid | ⊢ ( 𝑥  ∈  ℂ  ↦  ( ( sin ‘ 𝑥 ) ↑ 𝑁 ) )  =  ( 𝑥  ∈  ℂ  ↦  ( ( sin ‘ 𝑥 ) ↑ 𝑁 ) ) | 
						
							| 10 | 9 | fvmpt2 | ⊢ ( ( 𝑥  ∈  ℂ  ∧  ( ( sin ‘ 𝑥 ) ↑ 𝑁 )  ∈  ℂ )  →  ( ( 𝑥  ∈  ℂ  ↦  ( ( sin ‘ 𝑥 ) ↑ 𝑁 ) ) ‘ 𝑥 )  =  ( ( sin ‘ 𝑥 ) ↑ 𝑁 ) ) | 
						
							| 11 | 5 8 10 | syl2anc | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ  ∧  𝑁  ∈  ℕ0 )  ∧  𝑥  ∈  ( 𝐴 [,] 𝐵 ) )  →  ( ( 𝑥  ∈  ℂ  ↦  ( ( sin ‘ 𝑥 ) ↑ 𝑁 ) ) ‘ 𝑥 )  =  ( ( sin ‘ 𝑥 ) ↑ 𝑁 ) ) | 
						
							| 12 | 11 | eqcomd | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ  ∧  𝑁  ∈  ℕ0 )  ∧  𝑥  ∈  ( 𝐴 [,] 𝐵 ) )  →  ( ( sin ‘ 𝑥 ) ↑ 𝑁 )  =  ( ( 𝑥  ∈  ℂ  ↦  ( ( sin ‘ 𝑥 ) ↑ 𝑁 ) ) ‘ 𝑥 ) ) | 
						
							| 13 | 12 | mpteq2dva | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ  ∧  𝑁  ∈  ℕ0 )  →  ( 𝑥  ∈  ( 𝐴 [,] 𝐵 )  ↦  ( ( sin ‘ 𝑥 ) ↑ 𝑁 ) )  =  ( 𝑥  ∈  ( 𝐴 [,] 𝐵 )  ↦  ( ( 𝑥  ∈  ℂ  ↦  ( ( sin ‘ 𝑥 ) ↑ 𝑁 ) ) ‘ 𝑥 ) ) ) | 
						
							| 14 |  | nfmpt1 | ⊢ Ⅎ 𝑥 ( 𝑥  ∈  ℂ  ↦  ( ( sin ‘ 𝑥 ) ↑ 𝑁 ) ) | 
						
							| 15 |  | nfcv | ⊢ Ⅎ 𝑥 sin | 
						
							| 16 |  | sincn | ⊢ sin  ∈  ( ℂ –cn→ ℂ ) | 
						
							| 17 | 16 | a1i | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ  ∧  𝑁  ∈  ℕ0 )  →  sin  ∈  ( ℂ –cn→ ℂ ) ) | 
						
							| 18 |  | simp3 | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ  ∧  𝑁  ∈  ℕ0 )  →  𝑁  ∈  ℕ0 ) | 
						
							| 19 | 15 17 18 | expcnfg | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ  ∧  𝑁  ∈  ℕ0 )  →  ( 𝑥  ∈  ℂ  ↦  ( ( sin ‘ 𝑥 ) ↑ 𝑁 ) )  ∈  ( ℂ –cn→ ℂ ) ) | 
						
							| 20 | 3 | 3adant3 | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ  ∧  𝑁  ∈  ℕ0 )  →  ( 𝐴 [,] 𝐵 )  ⊆  ℂ ) | 
						
							| 21 | 14 19 20 | cncfmptss | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ  ∧  𝑁  ∈  ℕ0 )  →  ( 𝑥  ∈  ( 𝐴 [,] 𝐵 )  ↦  ( ( 𝑥  ∈  ℂ  ↦  ( ( sin ‘ 𝑥 ) ↑ 𝑁 ) ) ‘ 𝑥 ) )  ∈  ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) ) | 
						
							| 22 | 13 21 | eqeltrd | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ  ∧  𝑁  ∈  ℕ0 )  →  ( 𝑥  ∈  ( 𝐴 [,] 𝐵 )  ↦  ( ( sin ‘ 𝑥 ) ↑ 𝑁 ) )  ∈  ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) ) | 
						
							| 23 |  | cniccibl | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ  ∧  ( 𝑥  ∈  ( 𝐴 [,] 𝐵 )  ↦  ( ( sin ‘ 𝑥 ) ↑ 𝑁 ) )  ∈  ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) )  →  ( 𝑥  ∈  ( 𝐴 [,] 𝐵 )  ↦  ( ( sin ‘ 𝑥 ) ↑ 𝑁 ) )  ∈  𝐿1 ) | 
						
							| 24 | 22 23 | syld3an3 | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ  ∧  𝑁  ∈  ℕ0 )  →  ( 𝑥  ∈  ( 𝐴 [,] 𝐵 )  ↦  ( ( sin ‘ 𝑥 ) ↑ 𝑁 ) )  ∈  𝐿1 ) |