| Step |
Hyp |
Ref |
Expression |
| 1 |
|
iccssre |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 [,] 𝐵 ) ⊆ ℝ ) |
| 2 |
|
ax-resscn |
⊢ ℝ ⊆ ℂ |
| 3 |
1 2
|
sstrdi |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 [,] 𝐵 ) ⊆ ℂ ) |
| 4 |
3
|
sselda |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → 𝑥 ∈ ℂ ) |
| 5 |
4
|
3adantl3 |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑁 ∈ ℕ0 ) ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → 𝑥 ∈ ℂ ) |
| 6 |
5
|
sincld |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑁 ∈ ℕ0 ) ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → ( sin ‘ 𝑥 ) ∈ ℂ ) |
| 7 |
|
simpl3 |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑁 ∈ ℕ0 ) ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → 𝑁 ∈ ℕ0 ) |
| 8 |
6 7
|
expcld |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑁 ∈ ℕ0 ) ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → ( ( sin ‘ 𝑥 ) ↑ 𝑁 ) ∈ ℂ ) |
| 9 |
|
eqid |
⊢ ( 𝑥 ∈ ℂ ↦ ( ( sin ‘ 𝑥 ) ↑ 𝑁 ) ) = ( 𝑥 ∈ ℂ ↦ ( ( sin ‘ 𝑥 ) ↑ 𝑁 ) ) |
| 10 |
9
|
fvmpt2 |
⊢ ( ( 𝑥 ∈ ℂ ∧ ( ( sin ‘ 𝑥 ) ↑ 𝑁 ) ∈ ℂ ) → ( ( 𝑥 ∈ ℂ ↦ ( ( sin ‘ 𝑥 ) ↑ 𝑁 ) ) ‘ 𝑥 ) = ( ( sin ‘ 𝑥 ) ↑ 𝑁 ) ) |
| 11 |
5 8 10
|
syl2anc |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑁 ∈ ℕ0 ) ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → ( ( 𝑥 ∈ ℂ ↦ ( ( sin ‘ 𝑥 ) ↑ 𝑁 ) ) ‘ 𝑥 ) = ( ( sin ‘ 𝑥 ) ↑ 𝑁 ) ) |
| 12 |
11
|
eqcomd |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑁 ∈ ℕ0 ) ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → ( ( sin ‘ 𝑥 ) ↑ 𝑁 ) = ( ( 𝑥 ∈ ℂ ↦ ( ( sin ‘ 𝑥 ) ↑ 𝑁 ) ) ‘ 𝑥 ) ) |
| 13 |
12
|
mpteq2dva |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑁 ∈ ℕ0 ) → ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( ( sin ‘ 𝑥 ) ↑ 𝑁 ) ) = ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( ( 𝑥 ∈ ℂ ↦ ( ( sin ‘ 𝑥 ) ↑ 𝑁 ) ) ‘ 𝑥 ) ) ) |
| 14 |
|
nfmpt1 |
⊢ Ⅎ 𝑥 ( 𝑥 ∈ ℂ ↦ ( ( sin ‘ 𝑥 ) ↑ 𝑁 ) ) |
| 15 |
|
nfcv |
⊢ Ⅎ 𝑥 sin |
| 16 |
|
sincn |
⊢ sin ∈ ( ℂ –cn→ ℂ ) |
| 17 |
16
|
a1i |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑁 ∈ ℕ0 ) → sin ∈ ( ℂ –cn→ ℂ ) ) |
| 18 |
|
simp3 |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑁 ∈ ℕ0 ) → 𝑁 ∈ ℕ0 ) |
| 19 |
15 17 18
|
expcnfg |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑁 ∈ ℕ0 ) → ( 𝑥 ∈ ℂ ↦ ( ( sin ‘ 𝑥 ) ↑ 𝑁 ) ) ∈ ( ℂ –cn→ ℂ ) ) |
| 20 |
3
|
3adant3 |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑁 ∈ ℕ0 ) → ( 𝐴 [,] 𝐵 ) ⊆ ℂ ) |
| 21 |
14 19 20
|
cncfmptss |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑁 ∈ ℕ0 ) → ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( ( 𝑥 ∈ ℂ ↦ ( ( sin ‘ 𝑥 ) ↑ 𝑁 ) ) ‘ 𝑥 ) ) ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) ) |
| 22 |
13 21
|
eqeltrd |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑁 ∈ ℕ0 ) → ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( ( sin ‘ 𝑥 ) ↑ 𝑁 ) ) ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) ) |
| 23 |
|
cniccibl |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( ( sin ‘ 𝑥 ) ↑ 𝑁 ) ) ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) ) → ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( ( sin ‘ 𝑥 ) ↑ 𝑁 ) ) ∈ 𝐿1 ) |
| 24 |
22 23
|
syld3an3 |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑁 ∈ ℕ0 ) → ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( ( sin ‘ 𝑥 ) ↑ 𝑁 ) ) ∈ 𝐿1 ) |