Metamath Proof Explorer


Theorem expcnfg

Description: If F is a complex continuous function and N is a fixed number, then F^N is continuous too. A generalization of expcncf . (Contributed by Glauco Siliprandi, 29-Jun-2017)

Ref Expression
Hypotheses expcnfg.1 𝑥 𝐹
expcnfg.2 ( 𝜑𝐹 ∈ ( 𝐴cn→ ℂ ) )
expcnfg.3 ( 𝜑𝑁 ∈ ℕ0 )
Assertion expcnfg ( 𝜑 → ( 𝑥𝐴 ↦ ( ( 𝐹𝑥 ) ↑ 𝑁 ) ) ∈ ( 𝐴cn→ ℂ ) )

Proof

Step Hyp Ref Expression
1 expcnfg.1 𝑥 𝐹
2 expcnfg.2 ( 𝜑𝐹 ∈ ( 𝐴cn→ ℂ ) )
3 expcnfg.3 ( 𝜑𝑁 ∈ ℕ0 )
4 nfcv 𝑡 ( ( 𝐹𝑥 ) ↑ 𝑁 )
5 nfcv 𝑥 𝑡
6 1 5 nffv 𝑥 ( 𝐹𝑡 )
7 nfcv 𝑥
8 nfcv 𝑥 𝑁
9 6 7 8 nfov 𝑥 ( ( 𝐹𝑡 ) ↑ 𝑁 )
10 fveq2 ( 𝑥 = 𝑡 → ( 𝐹𝑥 ) = ( 𝐹𝑡 ) )
11 10 oveq1d ( 𝑥 = 𝑡 → ( ( 𝐹𝑥 ) ↑ 𝑁 ) = ( ( 𝐹𝑡 ) ↑ 𝑁 ) )
12 4 9 11 cbvmpt ( 𝑥𝐴 ↦ ( ( 𝐹𝑥 ) ↑ 𝑁 ) ) = ( 𝑡𝐴 ↦ ( ( 𝐹𝑡 ) ↑ 𝑁 ) )
13 cncff ( 𝐹 ∈ ( 𝐴cn→ ℂ ) → 𝐹 : 𝐴 ⟶ ℂ )
14 2 13 syl ( 𝜑𝐹 : 𝐴 ⟶ ℂ )
15 14 ffvelrnda ( ( 𝜑𝑡𝐴 ) → ( 𝐹𝑡 ) ∈ ℂ )
16 3 adantr ( ( 𝜑𝑡𝐴 ) → 𝑁 ∈ ℕ0 )
17 15 16 expcld ( ( 𝜑𝑡𝐴 ) → ( ( 𝐹𝑡 ) ↑ 𝑁 ) ∈ ℂ )
18 oveq1 ( 𝑥 = ( 𝐹𝑡 ) → ( 𝑥𝑁 ) = ( ( 𝐹𝑡 ) ↑ 𝑁 ) )
19 eqid ( 𝑥 ∈ ℂ ↦ ( 𝑥𝑁 ) ) = ( 𝑥 ∈ ℂ ↦ ( 𝑥𝑁 ) )
20 6 9 18 19 fvmptf ( ( ( 𝐹𝑡 ) ∈ ℂ ∧ ( ( 𝐹𝑡 ) ↑ 𝑁 ) ∈ ℂ ) → ( ( 𝑥 ∈ ℂ ↦ ( 𝑥𝑁 ) ) ‘ ( 𝐹𝑡 ) ) = ( ( 𝐹𝑡 ) ↑ 𝑁 ) )
21 15 17 20 syl2anc ( ( 𝜑𝑡𝐴 ) → ( ( 𝑥 ∈ ℂ ↦ ( 𝑥𝑁 ) ) ‘ ( 𝐹𝑡 ) ) = ( ( 𝐹𝑡 ) ↑ 𝑁 ) )
22 21 eqcomd ( ( 𝜑𝑡𝐴 ) → ( ( 𝐹𝑡 ) ↑ 𝑁 ) = ( ( 𝑥 ∈ ℂ ↦ ( 𝑥𝑁 ) ) ‘ ( 𝐹𝑡 ) ) )
23 22 mpteq2dva ( 𝜑 → ( 𝑡𝐴 ↦ ( ( 𝐹𝑡 ) ↑ 𝑁 ) ) = ( 𝑡𝐴 ↦ ( ( 𝑥 ∈ ℂ ↦ ( 𝑥𝑁 ) ) ‘ ( 𝐹𝑡 ) ) ) )
24 12 23 syl5eq ( 𝜑 → ( 𝑥𝐴 ↦ ( ( 𝐹𝑥 ) ↑ 𝑁 ) ) = ( 𝑡𝐴 ↦ ( ( 𝑥 ∈ ℂ ↦ ( 𝑥𝑁 ) ) ‘ ( 𝐹𝑡 ) ) ) )
25 simpr ( ( 𝜑𝑥 ∈ ℂ ) → 𝑥 ∈ ℂ )
26 3 adantr ( ( 𝜑𝑥 ∈ ℂ ) → 𝑁 ∈ ℕ0 )
27 25 26 expcld ( ( 𝜑𝑥 ∈ ℂ ) → ( 𝑥𝑁 ) ∈ ℂ )
28 27 fmpttd ( 𝜑 → ( 𝑥 ∈ ℂ ↦ ( 𝑥𝑁 ) ) : ℂ ⟶ ℂ )
29 fcompt ( ( ( 𝑥 ∈ ℂ ↦ ( 𝑥𝑁 ) ) : ℂ ⟶ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ) → ( ( 𝑥 ∈ ℂ ↦ ( 𝑥𝑁 ) ) ∘ 𝐹 ) = ( 𝑡𝐴 ↦ ( ( 𝑥 ∈ ℂ ↦ ( 𝑥𝑁 ) ) ‘ ( 𝐹𝑡 ) ) ) )
30 28 14 29 syl2anc ( 𝜑 → ( ( 𝑥 ∈ ℂ ↦ ( 𝑥𝑁 ) ) ∘ 𝐹 ) = ( 𝑡𝐴 ↦ ( ( 𝑥 ∈ ℂ ↦ ( 𝑥𝑁 ) ) ‘ ( 𝐹𝑡 ) ) ) )
31 24 30 eqtr4d ( 𝜑 → ( 𝑥𝐴 ↦ ( ( 𝐹𝑥 ) ↑ 𝑁 ) ) = ( ( 𝑥 ∈ ℂ ↦ ( 𝑥𝑁 ) ) ∘ 𝐹 ) )
32 expcncf ( 𝑁 ∈ ℕ0 → ( 𝑥 ∈ ℂ ↦ ( 𝑥𝑁 ) ) ∈ ( ℂ –cn→ ℂ ) )
33 3 32 syl ( 𝜑 → ( 𝑥 ∈ ℂ ↦ ( 𝑥𝑁 ) ) ∈ ( ℂ –cn→ ℂ ) )
34 2 33 cncfco ( 𝜑 → ( ( 𝑥 ∈ ℂ ↦ ( 𝑥𝑁 ) ) ∘ 𝐹 ) ∈ ( 𝐴cn→ ℂ ) )
35 31 34 eqeltrd ( 𝜑 → ( 𝑥𝐴 ↦ ( ( 𝐹𝑥 ) ↑ 𝑁 ) ) ∈ ( 𝐴cn→ ℂ ) )