| Step |
Hyp |
Ref |
Expression |
| 1 |
|
idfth.i |
|- I = ( idFunc ` C ) |
| 2 |
1
|
idfth |
|- ( I e. ( D Func E ) -> I e. ( D Faith E ) ) |
| 3 |
1
|
eleq1i |
|- ( I e. ( D Func E ) <-> ( idFunc ` C ) e. ( D Func E ) ) |
| 4 |
|
idfurcl |
|- ( ( idFunc ` C ) e. ( D Func E ) -> C e. Cat ) |
| 5 |
3 4
|
sylbi |
|- ( I e. ( D Func E ) -> C e. Cat ) |
| 6 |
|
eqid |
|- ( Base ` C ) = ( Base ` C ) |
| 7 |
1 6
|
idfu1stf1o |
|- ( C e. Cat -> ( 1st ` I ) : ( Base ` C ) -1-1-onto-> ( Base ` C ) ) |
| 8 |
|
dff1o4 |
|- ( ( 1st ` I ) : ( Base ` C ) -1-1-onto-> ( Base ` C ) <-> ( ( 1st ` I ) Fn ( Base ` C ) /\ `' ( 1st ` I ) Fn ( Base ` C ) ) ) |
| 9 |
8
|
simprbi |
|- ( ( 1st ` I ) : ( Base ` C ) -1-1-onto-> ( Base ` C ) -> `' ( 1st ` I ) Fn ( Base ` C ) ) |
| 10 |
5 7 9
|
3syl |
|- ( I e. ( D Func E ) -> `' ( 1st ` I ) Fn ( Base ` C ) ) |
| 11 |
10
|
fnfund |
|- ( I e. ( D Func E ) -> Fun `' ( 1st ` I ) ) |
| 12 |
2 11
|
jca |
|- ( I e. ( D Func E ) -> ( I e. ( D Faith E ) /\ Fun `' ( 1st ` I ) ) ) |