| Step |
Hyp |
Ref |
Expression |
| 1 |
|
idfth.i |
|- I = ( idFunc ` C ) |
| 2 |
|
relfunc |
|- Rel ( D Func E ) |
| 3 |
|
1st2nd |
|- ( ( Rel ( D Func E ) /\ I e. ( D Func E ) ) -> I = <. ( 1st ` I ) , ( 2nd ` I ) >. ) |
| 4 |
2 3
|
mpan |
|- ( I e. ( D Func E ) -> I = <. ( 1st ` I ) , ( 2nd ` I ) >. ) |
| 5 |
|
id |
|- ( I e. ( D Func E ) -> I e. ( D Func E ) ) |
| 6 |
5
|
func1st2nd |
|- ( I e. ( D Func E ) -> ( 1st ` I ) ( D Func E ) ( 2nd ` I ) ) |
| 7 |
|
f1oi |
|- ( _I |` ( x ( Hom ` D ) y ) ) : ( x ( Hom ` D ) y ) -1-1-onto-> ( x ( Hom ` D ) y ) |
| 8 |
|
dff1o3 |
|- ( ( _I |` ( x ( Hom ` D ) y ) ) : ( x ( Hom ` D ) y ) -1-1-onto-> ( x ( Hom ` D ) y ) <-> ( ( _I |` ( x ( Hom ` D ) y ) ) : ( x ( Hom ` D ) y ) -onto-> ( x ( Hom ` D ) y ) /\ Fun `' ( _I |` ( x ( Hom ` D ) y ) ) ) ) |
| 9 |
7 8
|
mpbi |
|- ( ( _I |` ( x ( Hom ` D ) y ) ) : ( x ( Hom ` D ) y ) -onto-> ( x ( Hom ` D ) y ) /\ Fun `' ( _I |` ( x ( Hom ` D ) y ) ) ) |
| 10 |
9
|
simpri |
|- Fun `' ( _I |` ( x ( Hom ` D ) y ) ) |
| 11 |
|
simpl |
|- ( ( I e. ( D Func E ) /\ ( x e. ( Base ` D ) /\ y e. ( Base ` D ) ) ) -> I e. ( D Func E ) ) |
| 12 |
|
eqidd |
|- ( ( I e. ( D Func E ) /\ ( x e. ( Base ` D ) /\ y e. ( Base ` D ) ) ) -> ( Base ` D ) = ( Base ` D ) ) |
| 13 |
|
simprl |
|- ( ( I e. ( D Func E ) /\ ( x e. ( Base ` D ) /\ y e. ( Base ` D ) ) ) -> x e. ( Base ` D ) ) |
| 14 |
|
simprr |
|- ( ( I e. ( D Func E ) /\ ( x e. ( Base ` D ) /\ y e. ( Base ` D ) ) ) -> y e. ( Base ` D ) ) |
| 15 |
|
eqidd |
|- ( ( I e. ( D Func E ) /\ ( x e. ( Base ` D ) /\ y e. ( Base ` D ) ) ) -> ( x ( Hom ` D ) y ) = ( x ( Hom ` D ) y ) ) |
| 16 |
1 11 12 13 14 15
|
idfu2nda |
|- ( ( I e. ( D Func E ) /\ ( x e. ( Base ` D ) /\ y e. ( Base ` D ) ) ) -> ( x ( 2nd ` I ) y ) = ( _I |` ( x ( Hom ` D ) y ) ) ) |
| 17 |
16
|
cnveqd |
|- ( ( I e. ( D Func E ) /\ ( x e. ( Base ` D ) /\ y e. ( Base ` D ) ) ) -> `' ( x ( 2nd ` I ) y ) = `' ( _I |` ( x ( Hom ` D ) y ) ) ) |
| 18 |
17
|
funeqd |
|- ( ( I e. ( D Func E ) /\ ( x e. ( Base ` D ) /\ y e. ( Base ` D ) ) ) -> ( Fun `' ( x ( 2nd ` I ) y ) <-> Fun `' ( _I |` ( x ( Hom ` D ) y ) ) ) ) |
| 19 |
10 18
|
mpbiri |
|- ( ( I e. ( D Func E ) /\ ( x e. ( Base ` D ) /\ y e. ( Base ` D ) ) ) -> Fun `' ( x ( 2nd ` I ) y ) ) |
| 20 |
19
|
ralrimivva |
|- ( I e. ( D Func E ) -> A. x e. ( Base ` D ) A. y e. ( Base ` D ) Fun `' ( x ( 2nd ` I ) y ) ) |
| 21 |
|
eqid |
|- ( Base ` D ) = ( Base ` D ) |
| 22 |
21
|
isfth |
|- ( ( 1st ` I ) ( D Faith E ) ( 2nd ` I ) <-> ( ( 1st ` I ) ( D Func E ) ( 2nd ` I ) /\ A. x e. ( Base ` D ) A. y e. ( Base ` D ) Fun `' ( x ( 2nd ` I ) y ) ) ) |
| 23 |
6 20 22
|
sylanbrc |
|- ( I e. ( D Func E ) -> ( 1st ` I ) ( D Faith E ) ( 2nd ` I ) ) |
| 24 |
|
df-br |
|- ( ( 1st ` I ) ( D Faith E ) ( 2nd ` I ) <-> <. ( 1st ` I ) , ( 2nd ` I ) >. e. ( D Faith E ) ) |
| 25 |
23 24
|
sylib |
|- ( I e. ( D Func E ) -> <. ( 1st ` I ) , ( 2nd ` I ) >. e. ( D Faith E ) ) |
| 26 |
4 25
|
eqeltrd |
|- ( I e. ( D Func E ) -> I e. ( D Faith E ) ) |