| Step |
Hyp |
Ref |
Expression |
| 1 |
|
idfth.i |
⊢ 𝐼 = ( idfunc ‘ 𝐶 ) |
| 2 |
|
relfunc |
⊢ Rel ( 𝐷 Func 𝐸 ) |
| 3 |
|
1st2nd |
⊢ ( ( Rel ( 𝐷 Func 𝐸 ) ∧ 𝐼 ∈ ( 𝐷 Func 𝐸 ) ) → 𝐼 = 〈 ( 1st ‘ 𝐼 ) , ( 2nd ‘ 𝐼 ) 〉 ) |
| 4 |
2 3
|
mpan |
⊢ ( 𝐼 ∈ ( 𝐷 Func 𝐸 ) → 𝐼 = 〈 ( 1st ‘ 𝐼 ) , ( 2nd ‘ 𝐼 ) 〉 ) |
| 5 |
|
id |
⊢ ( 𝐼 ∈ ( 𝐷 Func 𝐸 ) → 𝐼 ∈ ( 𝐷 Func 𝐸 ) ) |
| 6 |
5
|
func1st2nd |
⊢ ( 𝐼 ∈ ( 𝐷 Func 𝐸 ) → ( 1st ‘ 𝐼 ) ( 𝐷 Func 𝐸 ) ( 2nd ‘ 𝐼 ) ) |
| 7 |
|
f1oi |
⊢ ( I ↾ ( 𝑥 ( Hom ‘ 𝐷 ) 𝑦 ) ) : ( 𝑥 ( Hom ‘ 𝐷 ) 𝑦 ) –1-1-onto→ ( 𝑥 ( Hom ‘ 𝐷 ) 𝑦 ) |
| 8 |
|
dff1o3 |
⊢ ( ( I ↾ ( 𝑥 ( Hom ‘ 𝐷 ) 𝑦 ) ) : ( 𝑥 ( Hom ‘ 𝐷 ) 𝑦 ) –1-1-onto→ ( 𝑥 ( Hom ‘ 𝐷 ) 𝑦 ) ↔ ( ( I ↾ ( 𝑥 ( Hom ‘ 𝐷 ) 𝑦 ) ) : ( 𝑥 ( Hom ‘ 𝐷 ) 𝑦 ) –onto→ ( 𝑥 ( Hom ‘ 𝐷 ) 𝑦 ) ∧ Fun ◡ ( I ↾ ( 𝑥 ( Hom ‘ 𝐷 ) 𝑦 ) ) ) ) |
| 9 |
7 8
|
mpbi |
⊢ ( ( I ↾ ( 𝑥 ( Hom ‘ 𝐷 ) 𝑦 ) ) : ( 𝑥 ( Hom ‘ 𝐷 ) 𝑦 ) –onto→ ( 𝑥 ( Hom ‘ 𝐷 ) 𝑦 ) ∧ Fun ◡ ( I ↾ ( 𝑥 ( Hom ‘ 𝐷 ) 𝑦 ) ) ) |
| 10 |
9
|
simpri |
⊢ Fun ◡ ( I ↾ ( 𝑥 ( Hom ‘ 𝐷 ) 𝑦 ) ) |
| 11 |
|
simpl |
⊢ ( ( 𝐼 ∈ ( 𝐷 Func 𝐸 ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐷 ) ∧ 𝑦 ∈ ( Base ‘ 𝐷 ) ) ) → 𝐼 ∈ ( 𝐷 Func 𝐸 ) ) |
| 12 |
|
eqidd |
⊢ ( ( 𝐼 ∈ ( 𝐷 Func 𝐸 ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐷 ) ∧ 𝑦 ∈ ( Base ‘ 𝐷 ) ) ) → ( Base ‘ 𝐷 ) = ( Base ‘ 𝐷 ) ) |
| 13 |
|
simprl |
⊢ ( ( 𝐼 ∈ ( 𝐷 Func 𝐸 ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐷 ) ∧ 𝑦 ∈ ( Base ‘ 𝐷 ) ) ) → 𝑥 ∈ ( Base ‘ 𝐷 ) ) |
| 14 |
|
simprr |
⊢ ( ( 𝐼 ∈ ( 𝐷 Func 𝐸 ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐷 ) ∧ 𝑦 ∈ ( Base ‘ 𝐷 ) ) ) → 𝑦 ∈ ( Base ‘ 𝐷 ) ) |
| 15 |
|
eqidd |
⊢ ( ( 𝐼 ∈ ( 𝐷 Func 𝐸 ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐷 ) ∧ 𝑦 ∈ ( Base ‘ 𝐷 ) ) ) → ( 𝑥 ( Hom ‘ 𝐷 ) 𝑦 ) = ( 𝑥 ( Hom ‘ 𝐷 ) 𝑦 ) ) |
| 16 |
1 11 12 13 14 15
|
idfu2nda |
⊢ ( ( 𝐼 ∈ ( 𝐷 Func 𝐸 ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐷 ) ∧ 𝑦 ∈ ( Base ‘ 𝐷 ) ) ) → ( 𝑥 ( 2nd ‘ 𝐼 ) 𝑦 ) = ( I ↾ ( 𝑥 ( Hom ‘ 𝐷 ) 𝑦 ) ) ) |
| 17 |
16
|
cnveqd |
⊢ ( ( 𝐼 ∈ ( 𝐷 Func 𝐸 ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐷 ) ∧ 𝑦 ∈ ( Base ‘ 𝐷 ) ) ) → ◡ ( 𝑥 ( 2nd ‘ 𝐼 ) 𝑦 ) = ◡ ( I ↾ ( 𝑥 ( Hom ‘ 𝐷 ) 𝑦 ) ) ) |
| 18 |
17
|
funeqd |
⊢ ( ( 𝐼 ∈ ( 𝐷 Func 𝐸 ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐷 ) ∧ 𝑦 ∈ ( Base ‘ 𝐷 ) ) ) → ( Fun ◡ ( 𝑥 ( 2nd ‘ 𝐼 ) 𝑦 ) ↔ Fun ◡ ( I ↾ ( 𝑥 ( Hom ‘ 𝐷 ) 𝑦 ) ) ) ) |
| 19 |
10 18
|
mpbiri |
⊢ ( ( 𝐼 ∈ ( 𝐷 Func 𝐸 ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐷 ) ∧ 𝑦 ∈ ( Base ‘ 𝐷 ) ) ) → Fun ◡ ( 𝑥 ( 2nd ‘ 𝐼 ) 𝑦 ) ) |
| 20 |
19
|
ralrimivva |
⊢ ( 𝐼 ∈ ( 𝐷 Func 𝐸 ) → ∀ 𝑥 ∈ ( Base ‘ 𝐷 ) ∀ 𝑦 ∈ ( Base ‘ 𝐷 ) Fun ◡ ( 𝑥 ( 2nd ‘ 𝐼 ) 𝑦 ) ) |
| 21 |
|
eqid |
⊢ ( Base ‘ 𝐷 ) = ( Base ‘ 𝐷 ) |
| 22 |
21
|
isfth |
⊢ ( ( 1st ‘ 𝐼 ) ( 𝐷 Faith 𝐸 ) ( 2nd ‘ 𝐼 ) ↔ ( ( 1st ‘ 𝐼 ) ( 𝐷 Func 𝐸 ) ( 2nd ‘ 𝐼 ) ∧ ∀ 𝑥 ∈ ( Base ‘ 𝐷 ) ∀ 𝑦 ∈ ( Base ‘ 𝐷 ) Fun ◡ ( 𝑥 ( 2nd ‘ 𝐼 ) 𝑦 ) ) ) |
| 23 |
6 20 22
|
sylanbrc |
⊢ ( 𝐼 ∈ ( 𝐷 Func 𝐸 ) → ( 1st ‘ 𝐼 ) ( 𝐷 Faith 𝐸 ) ( 2nd ‘ 𝐼 ) ) |
| 24 |
|
df-br |
⊢ ( ( 1st ‘ 𝐼 ) ( 𝐷 Faith 𝐸 ) ( 2nd ‘ 𝐼 ) ↔ 〈 ( 1st ‘ 𝐼 ) , ( 2nd ‘ 𝐼 ) 〉 ∈ ( 𝐷 Faith 𝐸 ) ) |
| 25 |
23 24
|
sylib |
⊢ ( 𝐼 ∈ ( 𝐷 Func 𝐸 ) → 〈 ( 1st ‘ 𝐼 ) , ( 2nd ‘ 𝐼 ) 〉 ∈ ( 𝐷 Faith 𝐸 ) ) |
| 26 |
4 25
|
eqeltrd |
⊢ ( 𝐼 ∈ ( 𝐷 Func 𝐸 ) → 𝐼 ∈ ( 𝐷 Faith 𝐸 ) ) |