| Step |
Hyp |
Ref |
Expression |
| 1 |
|
idfth.i |
⊢ 𝐼 = ( idfunc ‘ 𝐶 ) |
| 2 |
1
|
idfth |
⊢ ( 𝐼 ∈ ( 𝐷 Func 𝐸 ) → 𝐼 ∈ ( 𝐷 Faith 𝐸 ) ) |
| 3 |
1
|
eleq1i |
⊢ ( 𝐼 ∈ ( 𝐷 Func 𝐸 ) ↔ ( idfunc ‘ 𝐶 ) ∈ ( 𝐷 Func 𝐸 ) ) |
| 4 |
|
idfurcl |
⊢ ( ( idfunc ‘ 𝐶 ) ∈ ( 𝐷 Func 𝐸 ) → 𝐶 ∈ Cat ) |
| 5 |
3 4
|
sylbi |
⊢ ( 𝐼 ∈ ( 𝐷 Func 𝐸 ) → 𝐶 ∈ Cat ) |
| 6 |
|
eqid |
⊢ ( Base ‘ 𝐶 ) = ( Base ‘ 𝐶 ) |
| 7 |
1 6
|
idfu1stf1o |
⊢ ( 𝐶 ∈ Cat → ( 1st ‘ 𝐼 ) : ( Base ‘ 𝐶 ) –1-1-onto→ ( Base ‘ 𝐶 ) ) |
| 8 |
|
dff1o4 |
⊢ ( ( 1st ‘ 𝐼 ) : ( Base ‘ 𝐶 ) –1-1-onto→ ( Base ‘ 𝐶 ) ↔ ( ( 1st ‘ 𝐼 ) Fn ( Base ‘ 𝐶 ) ∧ ◡ ( 1st ‘ 𝐼 ) Fn ( Base ‘ 𝐶 ) ) ) |
| 9 |
8
|
simprbi |
⊢ ( ( 1st ‘ 𝐼 ) : ( Base ‘ 𝐶 ) –1-1-onto→ ( Base ‘ 𝐶 ) → ◡ ( 1st ‘ 𝐼 ) Fn ( Base ‘ 𝐶 ) ) |
| 10 |
5 7 9
|
3syl |
⊢ ( 𝐼 ∈ ( 𝐷 Func 𝐸 ) → ◡ ( 1st ‘ 𝐼 ) Fn ( Base ‘ 𝐶 ) ) |
| 11 |
10
|
fnfund |
⊢ ( 𝐼 ∈ ( 𝐷 Func 𝐸 ) → Fun ◡ ( 1st ‘ 𝐼 ) ) |
| 12 |
2 11
|
jca |
⊢ ( 𝐼 ∈ ( 𝐷 Func 𝐸 ) → ( 𝐼 ∈ ( 𝐷 Faith 𝐸 ) ∧ Fun ◡ ( 1st ‘ 𝐼 ) ) ) |