Metamath Proof Explorer


Theorem idemb

Description: The inclusion functor is an embedding. Remark 4.4(1) in Adamek p. 49. (Contributed by Zhi Wang, 16-Nov-2025)

Ref Expression
Hypothesis idfth.i 𝐼 = ( idfunc𝐶 )
Assertion idemb ( 𝐼 ∈ ( 𝐷 Func 𝐸 ) → ( 𝐼 ∈ ( 𝐷 Faith 𝐸 ) ∧ Fun ( 1st𝐼 ) ) )

Proof

Step Hyp Ref Expression
1 idfth.i 𝐼 = ( idfunc𝐶 )
2 1 idfth ( 𝐼 ∈ ( 𝐷 Func 𝐸 ) → 𝐼 ∈ ( 𝐷 Faith 𝐸 ) )
3 1 eleq1i ( 𝐼 ∈ ( 𝐷 Func 𝐸 ) ↔ ( idfunc𝐶 ) ∈ ( 𝐷 Func 𝐸 ) )
4 idfurcl ( ( idfunc𝐶 ) ∈ ( 𝐷 Func 𝐸 ) → 𝐶 ∈ Cat )
5 3 4 sylbi ( 𝐼 ∈ ( 𝐷 Func 𝐸 ) → 𝐶 ∈ Cat )
6 eqid ( Base ‘ 𝐶 ) = ( Base ‘ 𝐶 )
7 1 6 idfu1stf1o ( 𝐶 ∈ Cat → ( 1st𝐼 ) : ( Base ‘ 𝐶 ) –1-1-onto→ ( Base ‘ 𝐶 ) )
8 dff1o4 ( ( 1st𝐼 ) : ( Base ‘ 𝐶 ) –1-1-onto→ ( Base ‘ 𝐶 ) ↔ ( ( 1st𝐼 ) Fn ( Base ‘ 𝐶 ) ∧ ( 1st𝐼 ) Fn ( Base ‘ 𝐶 ) ) )
9 8 simprbi ( ( 1st𝐼 ) : ( Base ‘ 𝐶 ) –1-1-onto→ ( Base ‘ 𝐶 ) → ( 1st𝐼 ) Fn ( Base ‘ 𝐶 ) )
10 5 7 9 3syl ( 𝐼 ∈ ( 𝐷 Func 𝐸 ) → ( 1st𝐼 ) Fn ( Base ‘ 𝐶 ) )
11 10 fnfund ( 𝐼 ∈ ( 𝐷 Func 𝐸 ) → Fun ( 1st𝐼 ) )
12 2 11 jca ( 𝐼 ∈ ( 𝐷 Func 𝐸 ) → ( 𝐼 ∈ ( 𝐷 Faith 𝐸 ) ∧ Fun ( 1st𝐼 ) ) )