Metamath Proof Explorer


Theorem idemb

Description: The inclusion functor is an embedding. Remark 4.4(1) in Adamek p. 49. (Contributed by Zhi Wang, 16-Nov-2025)

Ref Expression
Hypothesis idfth.i I = id func C
Assertion idemb I D Func E I D Faith E Fun 1 st I -1

Proof

Step Hyp Ref Expression
1 idfth.i I = id func C
2 1 idfth I D Func E I D Faith E
3 1 eleq1i I D Func E id func C D Func E
4 idfurcl id func C D Func E C Cat
5 3 4 sylbi I D Func E C Cat
6 eqid Base C = Base C
7 1 6 idfu1stf1o C Cat 1 st I : Base C 1-1 onto Base C
8 dff1o4 1 st I : Base C 1-1 onto Base C 1 st I Fn Base C 1 st I -1 Fn Base C
9 8 simprbi 1 st I : Base C 1-1 onto Base C 1 st I -1 Fn Base C
10 5 7 9 3syl I D Func E 1 st I -1 Fn Base C
11 10 fnfund I D Func E Fun 1 st I -1
12 2 11 jca I D Func E I D Faith E Fun 1 st I -1