| Step | Hyp | Ref | Expression | 
						
							| 1 |  | idmhm.b |  |-  B = ( Base ` M ) | 
						
							| 2 |  | id |  |-  ( M e. Mnd -> M e. Mnd ) | 
						
							| 3 |  | f1oi |  |-  ( _I |` B ) : B -1-1-onto-> B | 
						
							| 4 |  | f1of |  |-  ( ( _I |` B ) : B -1-1-onto-> B -> ( _I |` B ) : B --> B ) | 
						
							| 5 | 3 4 | mp1i |  |-  ( M e. Mnd -> ( _I |` B ) : B --> B ) | 
						
							| 6 |  | eqid |  |-  ( +g ` M ) = ( +g ` M ) | 
						
							| 7 | 1 6 | mndcl |  |-  ( ( M e. Mnd /\ a e. B /\ b e. B ) -> ( a ( +g ` M ) b ) e. B ) | 
						
							| 8 | 7 | 3expb |  |-  ( ( M e. Mnd /\ ( a e. B /\ b e. B ) ) -> ( a ( +g ` M ) b ) e. B ) | 
						
							| 9 |  | fvresi |  |-  ( ( a ( +g ` M ) b ) e. B -> ( ( _I |` B ) ` ( a ( +g ` M ) b ) ) = ( a ( +g ` M ) b ) ) | 
						
							| 10 | 8 9 | syl |  |-  ( ( M e. Mnd /\ ( a e. B /\ b e. B ) ) -> ( ( _I |` B ) ` ( a ( +g ` M ) b ) ) = ( a ( +g ` M ) b ) ) | 
						
							| 11 |  | fvresi |  |-  ( a e. B -> ( ( _I |` B ) ` a ) = a ) | 
						
							| 12 |  | fvresi |  |-  ( b e. B -> ( ( _I |` B ) ` b ) = b ) | 
						
							| 13 | 11 12 | oveqan12d |  |-  ( ( a e. B /\ b e. B ) -> ( ( ( _I |` B ) ` a ) ( +g ` M ) ( ( _I |` B ) ` b ) ) = ( a ( +g ` M ) b ) ) | 
						
							| 14 | 13 | adantl |  |-  ( ( M e. Mnd /\ ( a e. B /\ b e. B ) ) -> ( ( ( _I |` B ) ` a ) ( +g ` M ) ( ( _I |` B ) ` b ) ) = ( a ( +g ` M ) b ) ) | 
						
							| 15 | 10 14 | eqtr4d |  |-  ( ( M e. Mnd /\ ( a e. B /\ b e. B ) ) -> ( ( _I |` B ) ` ( a ( +g ` M ) b ) ) = ( ( ( _I |` B ) ` a ) ( +g ` M ) ( ( _I |` B ) ` b ) ) ) | 
						
							| 16 | 15 | ralrimivva |  |-  ( M e. Mnd -> A. a e. B A. b e. B ( ( _I |` B ) ` ( a ( +g ` M ) b ) ) = ( ( ( _I |` B ) ` a ) ( +g ` M ) ( ( _I |` B ) ` b ) ) ) | 
						
							| 17 |  | eqid |  |-  ( 0g ` M ) = ( 0g ` M ) | 
						
							| 18 | 1 17 | mndidcl |  |-  ( M e. Mnd -> ( 0g ` M ) e. B ) | 
						
							| 19 |  | fvresi |  |-  ( ( 0g ` M ) e. B -> ( ( _I |` B ) ` ( 0g ` M ) ) = ( 0g ` M ) ) | 
						
							| 20 | 18 19 | syl |  |-  ( M e. Mnd -> ( ( _I |` B ) ` ( 0g ` M ) ) = ( 0g ` M ) ) | 
						
							| 21 | 5 16 20 | 3jca |  |-  ( M e. Mnd -> ( ( _I |` B ) : B --> B /\ A. a e. B A. b e. B ( ( _I |` B ) ` ( a ( +g ` M ) b ) ) = ( ( ( _I |` B ) ` a ) ( +g ` M ) ( ( _I |` B ) ` b ) ) /\ ( ( _I |` B ) ` ( 0g ` M ) ) = ( 0g ` M ) ) ) | 
						
							| 22 | 1 1 6 6 17 17 | ismhm |  |-  ( ( _I |` B ) e. ( M MndHom M ) <-> ( ( M e. Mnd /\ M e. Mnd ) /\ ( ( _I |` B ) : B --> B /\ A. a e. B A. b e. B ( ( _I |` B ) ` ( a ( +g ` M ) b ) ) = ( ( ( _I |` B ) ` a ) ( +g ` M ) ( ( _I |` B ) ` b ) ) /\ ( ( _I |` B ) ` ( 0g ` M ) ) = ( 0g ` M ) ) ) ) | 
						
							| 23 | 2 2 21 22 | syl21anbrc |  |-  ( M e. Mnd -> ( _I |` B ) e. ( M MndHom M ) ) |