Metamath Proof Explorer


Theorem idmhm

Description: The identity homomorphism on a monoid. (Contributed by AV, 14-Feb-2020)

Ref Expression
Hypothesis idmhm.b 𝐵 = ( Base ‘ 𝑀 )
Assertion idmhm ( 𝑀 ∈ Mnd → ( I ↾ 𝐵 ) ∈ ( 𝑀 MndHom 𝑀 ) )

Proof

Step Hyp Ref Expression
1 idmhm.b 𝐵 = ( Base ‘ 𝑀 )
2 id ( 𝑀 ∈ Mnd → 𝑀 ∈ Mnd )
3 f1oi ( I ↾ 𝐵 ) : 𝐵1-1-onto𝐵
4 f1of ( ( I ↾ 𝐵 ) : 𝐵1-1-onto𝐵 → ( I ↾ 𝐵 ) : 𝐵𝐵 )
5 3 4 mp1i ( 𝑀 ∈ Mnd → ( I ↾ 𝐵 ) : 𝐵𝐵 )
6 eqid ( +g𝑀 ) = ( +g𝑀 )
7 1 6 mndcl ( ( 𝑀 ∈ Mnd ∧ 𝑎𝐵𝑏𝐵 ) → ( 𝑎 ( +g𝑀 ) 𝑏 ) ∈ 𝐵 )
8 7 3expb ( ( 𝑀 ∈ Mnd ∧ ( 𝑎𝐵𝑏𝐵 ) ) → ( 𝑎 ( +g𝑀 ) 𝑏 ) ∈ 𝐵 )
9 fvresi ( ( 𝑎 ( +g𝑀 ) 𝑏 ) ∈ 𝐵 → ( ( I ↾ 𝐵 ) ‘ ( 𝑎 ( +g𝑀 ) 𝑏 ) ) = ( 𝑎 ( +g𝑀 ) 𝑏 ) )
10 8 9 syl ( ( 𝑀 ∈ Mnd ∧ ( 𝑎𝐵𝑏𝐵 ) ) → ( ( I ↾ 𝐵 ) ‘ ( 𝑎 ( +g𝑀 ) 𝑏 ) ) = ( 𝑎 ( +g𝑀 ) 𝑏 ) )
11 fvresi ( 𝑎𝐵 → ( ( I ↾ 𝐵 ) ‘ 𝑎 ) = 𝑎 )
12 fvresi ( 𝑏𝐵 → ( ( I ↾ 𝐵 ) ‘ 𝑏 ) = 𝑏 )
13 11 12 oveqan12d ( ( 𝑎𝐵𝑏𝐵 ) → ( ( ( I ↾ 𝐵 ) ‘ 𝑎 ) ( +g𝑀 ) ( ( I ↾ 𝐵 ) ‘ 𝑏 ) ) = ( 𝑎 ( +g𝑀 ) 𝑏 ) )
14 13 adantl ( ( 𝑀 ∈ Mnd ∧ ( 𝑎𝐵𝑏𝐵 ) ) → ( ( ( I ↾ 𝐵 ) ‘ 𝑎 ) ( +g𝑀 ) ( ( I ↾ 𝐵 ) ‘ 𝑏 ) ) = ( 𝑎 ( +g𝑀 ) 𝑏 ) )
15 10 14 eqtr4d ( ( 𝑀 ∈ Mnd ∧ ( 𝑎𝐵𝑏𝐵 ) ) → ( ( I ↾ 𝐵 ) ‘ ( 𝑎 ( +g𝑀 ) 𝑏 ) ) = ( ( ( I ↾ 𝐵 ) ‘ 𝑎 ) ( +g𝑀 ) ( ( I ↾ 𝐵 ) ‘ 𝑏 ) ) )
16 15 ralrimivva ( 𝑀 ∈ Mnd → ∀ 𝑎𝐵𝑏𝐵 ( ( I ↾ 𝐵 ) ‘ ( 𝑎 ( +g𝑀 ) 𝑏 ) ) = ( ( ( I ↾ 𝐵 ) ‘ 𝑎 ) ( +g𝑀 ) ( ( I ↾ 𝐵 ) ‘ 𝑏 ) ) )
17 eqid ( 0g𝑀 ) = ( 0g𝑀 )
18 1 17 mndidcl ( 𝑀 ∈ Mnd → ( 0g𝑀 ) ∈ 𝐵 )
19 fvresi ( ( 0g𝑀 ) ∈ 𝐵 → ( ( I ↾ 𝐵 ) ‘ ( 0g𝑀 ) ) = ( 0g𝑀 ) )
20 18 19 syl ( 𝑀 ∈ Mnd → ( ( I ↾ 𝐵 ) ‘ ( 0g𝑀 ) ) = ( 0g𝑀 ) )
21 5 16 20 3jca ( 𝑀 ∈ Mnd → ( ( I ↾ 𝐵 ) : 𝐵𝐵 ∧ ∀ 𝑎𝐵𝑏𝐵 ( ( I ↾ 𝐵 ) ‘ ( 𝑎 ( +g𝑀 ) 𝑏 ) ) = ( ( ( I ↾ 𝐵 ) ‘ 𝑎 ) ( +g𝑀 ) ( ( I ↾ 𝐵 ) ‘ 𝑏 ) ) ∧ ( ( I ↾ 𝐵 ) ‘ ( 0g𝑀 ) ) = ( 0g𝑀 ) ) )
22 1 1 6 6 17 17 ismhm ( ( I ↾ 𝐵 ) ∈ ( 𝑀 MndHom 𝑀 ) ↔ ( ( 𝑀 ∈ Mnd ∧ 𝑀 ∈ Mnd ) ∧ ( ( I ↾ 𝐵 ) : 𝐵𝐵 ∧ ∀ 𝑎𝐵𝑏𝐵 ( ( I ↾ 𝐵 ) ‘ ( 𝑎 ( +g𝑀 ) 𝑏 ) ) = ( ( ( I ↾ 𝐵 ) ‘ 𝑎 ) ( +g𝑀 ) ( ( I ↾ 𝐵 ) ‘ 𝑏 ) ) ∧ ( ( I ↾ 𝐵 ) ‘ ( 0g𝑀 ) ) = ( 0g𝑀 ) ) ) )
23 2 2 21 22 syl21anbrc ( 𝑀 ∈ Mnd → ( I ↾ 𝐵 ) ∈ ( 𝑀 MndHom 𝑀 ) )