| Step |
Hyp |
Ref |
Expression |
| 1 |
|
inficc.a |
|- ( ph -> A e. RR* ) |
| 2 |
|
inficc.b |
|- ( ph -> B e. RR* ) |
| 3 |
|
inficc.s |
|- ( ph -> S C_ ( A [,] B ) ) |
| 4 |
|
inficc.n0 |
|- ( ph -> S =/= (/) ) |
| 5 |
|
iccssxr |
|- ( A [,] B ) C_ RR* |
| 6 |
5
|
a1i |
|- ( ph -> ( A [,] B ) C_ RR* ) |
| 7 |
3 6
|
sstrd |
|- ( ph -> S C_ RR* ) |
| 8 |
|
infxrcl |
|- ( S C_ RR* -> inf ( S , RR* , < ) e. RR* ) |
| 9 |
7 8
|
syl |
|- ( ph -> inf ( S , RR* , < ) e. RR* ) |
| 10 |
1
|
adantr |
|- ( ( ph /\ x e. S ) -> A e. RR* ) |
| 11 |
2
|
adantr |
|- ( ( ph /\ x e. S ) -> B e. RR* ) |
| 12 |
3
|
sselda |
|- ( ( ph /\ x e. S ) -> x e. ( A [,] B ) ) |
| 13 |
|
iccgelb |
|- ( ( A e. RR* /\ B e. RR* /\ x e. ( A [,] B ) ) -> A <_ x ) |
| 14 |
10 11 12 13
|
syl3anc |
|- ( ( ph /\ x e. S ) -> A <_ x ) |
| 15 |
14
|
ralrimiva |
|- ( ph -> A. x e. S A <_ x ) |
| 16 |
|
infxrgelb |
|- ( ( S C_ RR* /\ A e. RR* ) -> ( A <_ inf ( S , RR* , < ) <-> A. x e. S A <_ x ) ) |
| 17 |
7 1 16
|
syl2anc |
|- ( ph -> ( A <_ inf ( S , RR* , < ) <-> A. x e. S A <_ x ) ) |
| 18 |
15 17
|
mpbird |
|- ( ph -> A <_ inf ( S , RR* , < ) ) |
| 19 |
|
n0 |
|- ( S =/= (/) <-> E. x x e. S ) |
| 20 |
4 19
|
sylib |
|- ( ph -> E. x x e. S ) |
| 21 |
9
|
adantr |
|- ( ( ph /\ x e. S ) -> inf ( S , RR* , < ) e. RR* ) |
| 22 |
5 12
|
sselid |
|- ( ( ph /\ x e. S ) -> x e. RR* ) |
| 23 |
7
|
adantr |
|- ( ( ph /\ x e. S ) -> S C_ RR* ) |
| 24 |
|
simpr |
|- ( ( ph /\ x e. S ) -> x e. S ) |
| 25 |
|
infxrlb |
|- ( ( S C_ RR* /\ x e. S ) -> inf ( S , RR* , < ) <_ x ) |
| 26 |
23 24 25
|
syl2anc |
|- ( ( ph /\ x e. S ) -> inf ( S , RR* , < ) <_ x ) |
| 27 |
|
iccleub |
|- ( ( A e. RR* /\ B e. RR* /\ x e. ( A [,] B ) ) -> x <_ B ) |
| 28 |
10 11 12 27
|
syl3anc |
|- ( ( ph /\ x e. S ) -> x <_ B ) |
| 29 |
21 22 11 26 28
|
xrletrd |
|- ( ( ph /\ x e. S ) -> inf ( S , RR* , < ) <_ B ) |
| 30 |
29
|
ex |
|- ( ph -> ( x e. S -> inf ( S , RR* , < ) <_ B ) ) |
| 31 |
30
|
exlimdv |
|- ( ph -> ( E. x x e. S -> inf ( S , RR* , < ) <_ B ) ) |
| 32 |
20 31
|
mpd |
|- ( ph -> inf ( S , RR* , < ) <_ B ) |
| 33 |
1 2 9 18 32
|
eliccxrd |
|- ( ph -> inf ( S , RR* , < ) e. ( A [,] B ) ) |