| Step |
Hyp |
Ref |
Expression |
| 1 |
|
qinioo.a |
|- ( ph -> A e. RR* ) |
| 2 |
|
qinioo.b |
|- ( ph -> B e. RR* ) |
| 3 |
|
simplr |
|- ( ( ( ph /\ ( QQ i^i ( A (,) B ) ) = (/) ) /\ -. B <_ A ) -> ( QQ i^i ( A (,) B ) ) = (/) ) |
| 4 |
1 2
|
xrltnled |
|- ( ph -> ( A < B <-> -. B <_ A ) ) |
| 5 |
4
|
biimpar |
|- ( ( ph /\ -. B <_ A ) -> A < B ) |
| 6 |
1
|
adantr |
|- ( ( ph /\ A < B ) -> A e. RR* ) |
| 7 |
2
|
adantr |
|- ( ( ph /\ A < B ) -> B e. RR* ) |
| 8 |
|
simpr |
|- ( ( ph /\ A < B ) -> A < B ) |
| 9 |
|
qbtwnxr |
|- ( ( A e. RR* /\ B e. RR* /\ A < B ) -> E. q e. QQ ( A < q /\ q < B ) ) |
| 10 |
6 7 8 9
|
syl3anc |
|- ( ( ph /\ A < B ) -> E. q e. QQ ( A < q /\ q < B ) ) |
| 11 |
1
|
ad2antrr |
|- ( ( ( ph /\ q e. QQ ) /\ ( A < q /\ q < B ) ) -> A e. RR* ) |
| 12 |
2
|
ad2antrr |
|- ( ( ( ph /\ q e. QQ ) /\ ( A < q /\ q < B ) ) -> B e. RR* ) |
| 13 |
|
qre |
|- ( q e. QQ -> q e. RR ) |
| 14 |
13
|
ad2antlr |
|- ( ( ( ph /\ q e. QQ ) /\ ( A < q /\ q < B ) ) -> q e. RR ) |
| 15 |
|
simprl |
|- ( ( ( ph /\ q e. QQ ) /\ ( A < q /\ q < B ) ) -> A < q ) |
| 16 |
|
simprr |
|- ( ( ( ph /\ q e. QQ ) /\ ( A < q /\ q < B ) ) -> q < B ) |
| 17 |
11 12 14 15 16
|
eliood |
|- ( ( ( ph /\ q e. QQ ) /\ ( A < q /\ q < B ) ) -> q e. ( A (,) B ) ) |
| 18 |
17
|
ex |
|- ( ( ph /\ q e. QQ ) -> ( ( A < q /\ q < B ) -> q e. ( A (,) B ) ) ) |
| 19 |
18
|
adantlr |
|- ( ( ( ph /\ A < B ) /\ q e. QQ ) -> ( ( A < q /\ q < B ) -> q e. ( A (,) B ) ) ) |
| 20 |
19
|
reximdva |
|- ( ( ph /\ A < B ) -> ( E. q e. QQ ( A < q /\ q < B ) -> E. q e. QQ q e. ( A (,) B ) ) ) |
| 21 |
10 20
|
mpd |
|- ( ( ph /\ A < B ) -> E. q e. QQ q e. ( A (,) B ) ) |
| 22 |
|
inn0 |
|- ( ( QQ i^i ( A (,) B ) ) =/= (/) <-> E. q e. QQ q e. ( A (,) B ) ) |
| 23 |
21 22
|
sylibr |
|- ( ( ph /\ A < B ) -> ( QQ i^i ( A (,) B ) ) =/= (/) ) |
| 24 |
5 23
|
syldan |
|- ( ( ph /\ -. B <_ A ) -> ( QQ i^i ( A (,) B ) ) =/= (/) ) |
| 25 |
24
|
neneqd |
|- ( ( ph /\ -. B <_ A ) -> -. ( QQ i^i ( A (,) B ) ) = (/) ) |
| 26 |
25
|
adantlr |
|- ( ( ( ph /\ ( QQ i^i ( A (,) B ) ) = (/) ) /\ -. B <_ A ) -> -. ( QQ i^i ( A (,) B ) ) = (/) ) |
| 27 |
3 26
|
condan |
|- ( ( ph /\ ( QQ i^i ( A (,) B ) ) = (/) ) -> B <_ A ) |
| 28 |
|
ioo0 |
|- ( ( A e. RR* /\ B e. RR* ) -> ( ( A (,) B ) = (/) <-> B <_ A ) ) |
| 29 |
1 2 28
|
syl2anc |
|- ( ph -> ( ( A (,) B ) = (/) <-> B <_ A ) ) |
| 30 |
29
|
biimpar |
|- ( ( ph /\ B <_ A ) -> ( A (,) B ) = (/) ) |
| 31 |
|
ineq2 |
|- ( ( A (,) B ) = (/) -> ( QQ i^i ( A (,) B ) ) = ( QQ i^i (/) ) ) |
| 32 |
|
in0 |
|- ( QQ i^i (/) ) = (/) |
| 33 |
31 32
|
eqtrdi |
|- ( ( A (,) B ) = (/) -> ( QQ i^i ( A (,) B ) ) = (/) ) |
| 34 |
30 33
|
syl |
|- ( ( ph /\ B <_ A ) -> ( QQ i^i ( A (,) B ) ) = (/) ) |
| 35 |
27 34
|
impbida |
|- ( ph -> ( ( QQ i^i ( A (,) B ) ) = (/) <-> B <_ A ) ) |