| Step |
Hyp |
Ref |
Expression |
| 1 |
|
inficc.a |
⊢ ( 𝜑 → 𝐴 ∈ ℝ* ) |
| 2 |
|
inficc.b |
⊢ ( 𝜑 → 𝐵 ∈ ℝ* ) |
| 3 |
|
inficc.s |
⊢ ( 𝜑 → 𝑆 ⊆ ( 𝐴 [,] 𝐵 ) ) |
| 4 |
|
inficc.n0 |
⊢ ( 𝜑 → 𝑆 ≠ ∅ ) |
| 5 |
|
iccssxr |
⊢ ( 𝐴 [,] 𝐵 ) ⊆ ℝ* |
| 6 |
5
|
a1i |
⊢ ( 𝜑 → ( 𝐴 [,] 𝐵 ) ⊆ ℝ* ) |
| 7 |
3 6
|
sstrd |
⊢ ( 𝜑 → 𝑆 ⊆ ℝ* ) |
| 8 |
|
infxrcl |
⊢ ( 𝑆 ⊆ ℝ* → inf ( 𝑆 , ℝ* , < ) ∈ ℝ* ) |
| 9 |
7 8
|
syl |
⊢ ( 𝜑 → inf ( 𝑆 , ℝ* , < ) ∈ ℝ* ) |
| 10 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) → 𝐴 ∈ ℝ* ) |
| 11 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) → 𝐵 ∈ ℝ* ) |
| 12 |
3
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) → 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) |
| 13 |
|
iccgelb |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → 𝐴 ≤ 𝑥 ) |
| 14 |
10 11 12 13
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) → 𝐴 ≤ 𝑥 ) |
| 15 |
14
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝑆 𝐴 ≤ 𝑥 ) |
| 16 |
|
infxrgelb |
⊢ ( ( 𝑆 ⊆ ℝ* ∧ 𝐴 ∈ ℝ* ) → ( 𝐴 ≤ inf ( 𝑆 , ℝ* , < ) ↔ ∀ 𝑥 ∈ 𝑆 𝐴 ≤ 𝑥 ) ) |
| 17 |
7 1 16
|
syl2anc |
⊢ ( 𝜑 → ( 𝐴 ≤ inf ( 𝑆 , ℝ* , < ) ↔ ∀ 𝑥 ∈ 𝑆 𝐴 ≤ 𝑥 ) ) |
| 18 |
15 17
|
mpbird |
⊢ ( 𝜑 → 𝐴 ≤ inf ( 𝑆 , ℝ* , < ) ) |
| 19 |
|
n0 |
⊢ ( 𝑆 ≠ ∅ ↔ ∃ 𝑥 𝑥 ∈ 𝑆 ) |
| 20 |
4 19
|
sylib |
⊢ ( 𝜑 → ∃ 𝑥 𝑥 ∈ 𝑆 ) |
| 21 |
9
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) → inf ( 𝑆 , ℝ* , < ) ∈ ℝ* ) |
| 22 |
5 12
|
sselid |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) → 𝑥 ∈ ℝ* ) |
| 23 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) → 𝑆 ⊆ ℝ* ) |
| 24 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) → 𝑥 ∈ 𝑆 ) |
| 25 |
|
infxrlb |
⊢ ( ( 𝑆 ⊆ ℝ* ∧ 𝑥 ∈ 𝑆 ) → inf ( 𝑆 , ℝ* , < ) ≤ 𝑥 ) |
| 26 |
23 24 25
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) → inf ( 𝑆 , ℝ* , < ) ≤ 𝑥 ) |
| 27 |
|
iccleub |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → 𝑥 ≤ 𝐵 ) |
| 28 |
10 11 12 27
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) → 𝑥 ≤ 𝐵 ) |
| 29 |
21 22 11 26 28
|
xrletrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) → inf ( 𝑆 , ℝ* , < ) ≤ 𝐵 ) |
| 30 |
29
|
ex |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝑆 → inf ( 𝑆 , ℝ* , < ) ≤ 𝐵 ) ) |
| 31 |
30
|
exlimdv |
⊢ ( 𝜑 → ( ∃ 𝑥 𝑥 ∈ 𝑆 → inf ( 𝑆 , ℝ* , < ) ≤ 𝐵 ) ) |
| 32 |
20 31
|
mpd |
⊢ ( 𝜑 → inf ( 𝑆 , ℝ* , < ) ≤ 𝐵 ) |
| 33 |
1 2 9 18 32
|
eliccxrd |
⊢ ( 𝜑 → inf ( 𝑆 , ℝ* , < ) ∈ ( 𝐴 [,] 𝐵 ) ) |