Step |
Hyp |
Ref |
Expression |
1 |
|
islbs5.b |
|- B = ( Base ` W ) |
2 |
|
islbs5.k |
|- K = ( Base ` S ) |
3 |
|
islbs5.r |
|- S = ( Scalar ` W ) |
4 |
|
islbs5.t |
|- .x. = ( .s ` W ) |
5 |
|
islbs5.z |
|- O = ( 0g ` W ) |
6 |
|
islbs5.y |
|- .0. = ( 0g ` S ) |
7 |
|
islbs5.j |
|- J = ( LBasis ` W ) |
8 |
|
islbs5.n |
|- N = ( LSpan ` W ) |
9 |
|
islbs5.w |
|- ( ph -> W e. LMod ) |
10 |
|
islbs5.s |
|- ( ph -> S e. NzRing ) |
11 |
|
islbs5.i |
|- ( ph -> I e. V ) |
12 |
|
islbs5.f |
|- ( ph -> F : I -1-1-> B ) |
13 |
|
eqid |
|- ( Base ` F ) = ( Base ` F ) |
14 |
1 13 3 4 5 6 8 9 10 11 12
|
lindflbs |
|- ( ph -> ( ran F e. ( LBasis ` W ) <-> ( F LIndF W /\ ( N ` ran F ) = B ) ) ) |
15 |
|
f1f |
|- ( F : I -1-1-> B -> F : I --> B ) |
16 |
12 15
|
syl |
|- ( ph -> F : I --> B ) |
17 |
|
eqid |
|- ( Base ` ( S freeLMod I ) ) = ( Base ` ( S freeLMod I ) ) |
18 |
1 3 4 5 6 17
|
islindf4 |
|- ( ( W e. LMod /\ I e. V /\ F : I --> B ) -> ( F LIndF W <-> A. a e. ( Base ` ( S freeLMod I ) ) ( ( W gsum ( a oF .x. F ) ) = O -> a = ( I X. { .0. } ) ) ) ) |
19 |
9 11 16 18
|
syl3anc |
|- ( ph -> ( F LIndF W <-> A. a e. ( Base ` ( S freeLMod I ) ) ( ( W gsum ( a oF .x. F ) ) = O -> a = ( I X. { .0. } ) ) ) ) |
20 |
10
|
elexd |
|- ( ph -> S e. _V ) |
21 |
|
eqid |
|- ( S freeLMod I ) = ( S freeLMod I ) |
22 |
21 2 6 17
|
frlmelbas |
|- ( ( S e. _V /\ I e. V ) -> ( a e. ( Base ` ( S freeLMod I ) ) <-> ( a e. ( K ^m I ) /\ a finSupp .0. ) ) ) |
23 |
20 11 22
|
syl2anc |
|- ( ph -> ( a e. ( Base ` ( S freeLMod I ) ) <-> ( a e. ( K ^m I ) /\ a finSupp .0. ) ) ) |
24 |
23
|
imbi1d |
|- ( ph -> ( ( a e. ( Base ` ( S freeLMod I ) ) -> ( ( W gsum ( a oF .x. F ) ) = O -> a = ( I X. { .0. } ) ) ) <-> ( ( a e. ( K ^m I ) /\ a finSupp .0. ) -> ( ( W gsum ( a oF .x. F ) ) = O -> a = ( I X. { .0. } ) ) ) ) ) |
25 |
|
impexp |
|- ( ( ( a e. ( K ^m I ) /\ a finSupp .0. ) -> ( ( W gsum ( a oF .x. F ) ) = O -> a = ( I X. { .0. } ) ) ) <-> ( a e. ( K ^m I ) -> ( a finSupp .0. -> ( ( W gsum ( a oF .x. F ) ) = O -> a = ( I X. { .0. } ) ) ) ) ) |
26 |
|
impexp |
|- ( ( ( a finSupp .0. /\ ( W gsum ( a oF .x. F ) ) = O ) -> a = ( I X. { .0. } ) ) <-> ( a finSupp .0. -> ( ( W gsum ( a oF .x. F ) ) = O -> a = ( I X. { .0. } ) ) ) ) |
27 |
26
|
a1i |
|- ( ph -> ( ( ( a finSupp .0. /\ ( W gsum ( a oF .x. F ) ) = O ) -> a = ( I X. { .0. } ) ) <-> ( a finSupp .0. -> ( ( W gsum ( a oF .x. F ) ) = O -> a = ( I X. { .0. } ) ) ) ) ) |
28 |
27
|
bicomd |
|- ( ph -> ( ( a finSupp .0. -> ( ( W gsum ( a oF .x. F ) ) = O -> a = ( I X. { .0. } ) ) ) <-> ( ( a finSupp .0. /\ ( W gsum ( a oF .x. F ) ) = O ) -> a = ( I X. { .0. } ) ) ) ) |
29 |
28
|
imbi2d |
|- ( ph -> ( ( a e. ( K ^m I ) -> ( a finSupp .0. -> ( ( W gsum ( a oF .x. F ) ) = O -> a = ( I X. { .0. } ) ) ) ) <-> ( a e. ( K ^m I ) -> ( ( a finSupp .0. /\ ( W gsum ( a oF .x. F ) ) = O ) -> a = ( I X. { .0. } ) ) ) ) ) |
30 |
25 29
|
bitrid |
|- ( ph -> ( ( ( a e. ( K ^m I ) /\ a finSupp .0. ) -> ( ( W gsum ( a oF .x. F ) ) = O -> a = ( I X. { .0. } ) ) ) <-> ( a e. ( K ^m I ) -> ( ( a finSupp .0. /\ ( W gsum ( a oF .x. F ) ) = O ) -> a = ( I X. { .0. } ) ) ) ) ) |
31 |
24 30
|
bitrd |
|- ( ph -> ( ( a e. ( Base ` ( S freeLMod I ) ) -> ( ( W gsum ( a oF .x. F ) ) = O -> a = ( I X. { .0. } ) ) ) <-> ( a e. ( K ^m I ) -> ( ( a finSupp .0. /\ ( W gsum ( a oF .x. F ) ) = O ) -> a = ( I X. { .0. } ) ) ) ) ) |
32 |
31
|
ralbidv2 |
|- ( ph -> ( A. a e. ( Base ` ( S freeLMod I ) ) ( ( W gsum ( a oF .x. F ) ) = O -> a = ( I X. { .0. } ) ) <-> A. a e. ( K ^m I ) ( ( a finSupp .0. /\ ( W gsum ( a oF .x. F ) ) = O ) -> a = ( I X. { .0. } ) ) ) ) |
33 |
19 32
|
bitrd |
|- ( ph -> ( F LIndF W <-> A. a e. ( K ^m I ) ( ( a finSupp .0. /\ ( W gsum ( a oF .x. F ) ) = O ) -> a = ( I X. { .0. } ) ) ) ) |
34 |
33
|
anbi1d |
|- ( ph -> ( ( F LIndF W /\ ( N ` ran F ) = B ) <-> ( A. a e. ( K ^m I ) ( ( a finSupp .0. /\ ( W gsum ( a oF .x. F ) ) = O ) -> a = ( I X. { .0. } ) ) /\ ( N ` ran F ) = B ) ) ) |
35 |
14 34
|
bitrd |
|- ( ph -> ( ran F e. ( LBasis ` W ) <-> ( A. a e. ( K ^m I ) ( ( a finSupp .0. /\ ( W gsum ( a oF .x. F ) ) = O ) -> a = ( I X. { .0. } ) ) /\ ( N ` ran F ) = B ) ) ) |