| Step |
Hyp |
Ref |
Expression |
| 1 |
|
islbs5.b |
|- B = ( Base ` W ) |
| 2 |
|
islbs5.k |
|- K = ( Base ` S ) |
| 3 |
|
islbs5.r |
|- S = ( Scalar ` W ) |
| 4 |
|
islbs5.t |
|- .x. = ( .s ` W ) |
| 5 |
|
islbs5.z |
|- O = ( 0g ` W ) |
| 6 |
|
islbs5.y |
|- .0. = ( 0g ` S ) |
| 7 |
|
islbs5.j |
|- J = ( LBasis ` W ) |
| 8 |
|
islbs5.n |
|- N = ( LSpan ` W ) |
| 9 |
|
islbs5.w |
|- ( ph -> W e. LMod ) |
| 10 |
|
islbs5.s |
|- ( ph -> S e. NzRing ) |
| 11 |
|
islbs5.i |
|- ( ph -> I e. V ) |
| 12 |
|
islbs5.f |
|- ( ph -> F : I -1-1-> B ) |
| 13 |
|
eqid |
|- ( Base ` F ) = ( Base ` F ) |
| 14 |
1 13 3 4 5 6 8 9 10 11 12
|
lindflbs |
|- ( ph -> ( ran F e. ( LBasis ` W ) <-> ( F LIndF W /\ ( N ` ran F ) = B ) ) ) |
| 15 |
|
f1f |
|- ( F : I -1-1-> B -> F : I --> B ) |
| 16 |
12 15
|
syl |
|- ( ph -> F : I --> B ) |
| 17 |
|
eqid |
|- ( Base ` ( S freeLMod I ) ) = ( Base ` ( S freeLMod I ) ) |
| 18 |
1 3 4 5 6 17
|
islindf4 |
|- ( ( W e. LMod /\ I e. V /\ F : I --> B ) -> ( F LIndF W <-> A. a e. ( Base ` ( S freeLMod I ) ) ( ( W gsum ( a oF .x. F ) ) = O -> a = ( I X. { .0. } ) ) ) ) |
| 19 |
9 11 16 18
|
syl3anc |
|- ( ph -> ( F LIndF W <-> A. a e. ( Base ` ( S freeLMod I ) ) ( ( W gsum ( a oF .x. F ) ) = O -> a = ( I X. { .0. } ) ) ) ) |
| 20 |
10
|
elexd |
|- ( ph -> S e. _V ) |
| 21 |
|
eqid |
|- ( S freeLMod I ) = ( S freeLMod I ) |
| 22 |
21 2 6 17
|
frlmelbas |
|- ( ( S e. _V /\ I e. V ) -> ( a e. ( Base ` ( S freeLMod I ) ) <-> ( a e. ( K ^m I ) /\ a finSupp .0. ) ) ) |
| 23 |
20 11 22
|
syl2anc |
|- ( ph -> ( a e. ( Base ` ( S freeLMod I ) ) <-> ( a e. ( K ^m I ) /\ a finSupp .0. ) ) ) |
| 24 |
23
|
imbi1d |
|- ( ph -> ( ( a e. ( Base ` ( S freeLMod I ) ) -> ( ( W gsum ( a oF .x. F ) ) = O -> a = ( I X. { .0. } ) ) ) <-> ( ( a e. ( K ^m I ) /\ a finSupp .0. ) -> ( ( W gsum ( a oF .x. F ) ) = O -> a = ( I X. { .0. } ) ) ) ) ) |
| 25 |
|
impexp |
|- ( ( ( a e. ( K ^m I ) /\ a finSupp .0. ) -> ( ( W gsum ( a oF .x. F ) ) = O -> a = ( I X. { .0. } ) ) ) <-> ( a e. ( K ^m I ) -> ( a finSupp .0. -> ( ( W gsum ( a oF .x. F ) ) = O -> a = ( I X. { .0. } ) ) ) ) ) |
| 26 |
|
impexp |
|- ( ( ( a finSupp .0. /\ ( W gsum ( a oF .x. F ) ) = O ) -> a = ( I X. { .0. } ) ) <-> ( a finSupp .0. -> ( ( W gsum ( a oF .x. F ) ) = O -> a = ( I X. { .0. } ) ) ) ) |
| 27 |
26
|
a1i |
|- ( ph -> ( ( ( a finSupp .0. /\ ( W gsum ( a oF .x. F ) ) = O ) -> a = ( I X. { .0. } ) ) <-> ( a finSupp .0. -> ( ( W gsum ( a oF .x. F ) ) = O -> a = ( I X. { .0. } ) ) ) ) ) |
| 28 |
27
|
bicomd |
|- ( ph -> ( ( a finSupp .0. -> ( ( W gsum ( a oF .x. F ) ) = O -> a = ( I X. { .0. } ) ) ) <-> ( ( a finSupp .0. /\ ( W gsum ( a oF .x. F ) ) = O ) -> a = ( I X. { .0. } ) ) ) ) |
| 29 |
28
|
imbi2d |
|- ( ph -> ( ( a e. ( K ^m I ) -> ( a finSupp .0. -> ( ( W gsum ( a oF .x. F ) ) = O -> a = ( I X. { .0. } ) ) ) ) <-> ( a e. ( K ^m I ) -> ( ( a finSupp .0. /\ ( W gsum ( a oF .x. F ) ) = O ) -> a = ( I X. { .0. } ) ) ) ) ) |
| 30 |
25 29
|
bitrid |
|- ( ph -> ( ( ( a e. ( K ^m I ) /\ a finSupp .0. ) -> ( ( W gsum ( a oF .x. F ) ) = O -> a = ( I X. { .0. } ) ) ) <-> ( a e. ( K ^m I ) -> ( ( a finSupp .0. /\ ( W gsum ( a oF .x. F ) ) = O ) -> a = ( I X. { .0. } ) ) ) ) ) |
| 31 |
24 30
|
bitrd |
|- ( ph -> ( ( a e. ( Base ` ( S freeLMod I ) ) -> ( ( W gsum ( a oF .x. F ) ) = O -> a = ( I X. { .0. } ) ) ) <-> ( a e. ( K ^m I ) -> ( ( a finSupp .0. /\ ( W gsum ( a oF .x. F ) ) = O ) -> a = ( I X. { .0. } ) ) ) ) ) |
| 32 |
31
|
ralbidv2 |
|- ( ph -> ( A. a e. ( Base ` ( S freeLMod I ) ) ( ( W gsum ( a oF .x. F ) ) = O -> a = ( I X. { .0. } ) ) <-> A. a e. ( K ^m I ) ( ( a finSupp .0. /\ ( W gsum ( a oF .x. F ) ) = O ) -> a = ( I X. { .0. } ) ) ) ) |
| 33 |
19 32
|
bitrd |
|- ( ph -> ( F LIndF W <-> A. a e. ( K ^m I ) ( ( a finSupp .0. /\ ( W gsum ( a oF .x. F ) ) = O ) -> a = ( I X. { .0. } ) ) ) ) |
| 34 |
33
|
anbi1d |
|- ( ph -> ( ( F LIndF W /\ ( N ` ran F ) = B ) <-> ( A. a e. ( K ^m I ) ( ( a finSupp .0. /\ ( W gsum ( a oF .x. F ) ) = O ) -> a = ( I X. { .0. } ) ) /\ ( N ` ran F ) = B ) ) ) |
| 35 |
14 34
|
bitrd |
|- ( ph -> ( ran F e. ( LBasis ` W ) <-> ( A. a e. ( K ^m I ) ( ( a finSupp .0. /\ ( W gsum ( a oF .x. F ) ) = O ) -> a = ( I X. { .0. } ) ) /\ ( N ` ran F ) = B ) ) ) |