Metamath Proof Explorer


Theorem isubgr3stgrlem2

Description: Lemma 2 for isubgr3stgr . (Contributed by AV, 16-Sep-2025)

Ref Expression
Hypotheses isubgr3stgr.v
|- V = ( Vtx ` G )
isubgr3stgr.u
|- U = ( G NeighbVtx X )
isubgr3stgr.c
|- C = ( G ClNeighbVtx X )
isubgr3stgr.n
|- N e. NN0
isubgr3stgr.s
|- S = ( StarGr ` N )
isubgr3stgr.w
|- W = ( Vtx ` S )
Assertion isubgr3stgrlem2
|- ( ( G e. USGraph /\ X e. V /\ ( # ` U ) = N ) -> E. f f : U -1-1-onto-> ( W \ { 0 } ) )

Proof

Step Hyp Ref Expression
1 isubgr3stgr.v
 |-  V = ( Vtx ` G )
2 isubgr3stgr.u
 |-  U = ( G NeighbVtx X )
3 isubgr3stgr.c
 |-  C = ( G ClNeighbVtx X )
4 isubgr3stgr.n
 |-  N e. NN0
5 isubgr3stgr.s
 |-  S = ( StarGr ` N )
6 isubgr3stgr.w
 |-  W = ( Vtx ` S )
7 5 6 stgrorder
 |-  ( N e. NN0 -> ( # ` W ) = ( N + 1 ) )
8 4 7 ax-mp
 |-  ( # ` W ) = ( N + 1 )
9 oveq1
 |-  ( ( # ` W ) = ( N + 1 ) -> ( ( # ` W ) - 1 ) = ( ( N + 1 ) - 1 ) )
10 nn0cn
 |-  ( N e. NN0 -> N e. CC )
11 pncan1
 |-  ( N e. CC -> ( ( N + 1 ) - 1 ) = N )
12 10 11 syl
 |-  ( N e. NN0 -> ( ( N + 1 ) - 1 ) = N )
13 4 12 mp1i
 |-  ( ( # ` W ) = ( N + 1 ) -> ( ( N + 1 ) - 1 ) = N )
14 9 13 eqtrd
 |-  ( ( # ` W ) = ( N + 1 ) -> ( ( # ` W ) - 1 ) = N )
15 14 adantr
 |-  ( ( ( # ` W ) = ( N + 1 ) /\ ( G e. USGraph /\ X e. V /\ ( # ` U ) = N ) ) -> ( ( # ` W ) - 1 ) = N )
16 peano2nn0
 |-  ( N e. NN0 -> ( N + 1 ) e. NN0 )
17 4 16 ax-mp
 |-  ( N + 1 ) e. NN0
18 eleq1
 |-  ( ( # ` W ) = ( N + 1 ) -> ( ( # ` W ) e. NN0 <-> ( N + 1 ) e. NN0 ) )
19 17 18 mpbiri
 |-  ( ( # ` W ) = ( N + 1 ) -> ( # ` W ) e. NN0 )
20 19 adantr
 |-  ( ( ( # ` W ) = ( N + 1 ) /\ ( G e. USGraph /\ X e. V /\ ( # ` U ) = N ) ) -> ( # ` W ) e. NN0 )
21 6 fvexi
 |-  W e. _V
22 hashclb
 |-  ( W e. _V -> ( W e. Fin <-> ( # ` W ) e. NN0 ) )
23 21 22 mp1i
 |-  ( ( ( # ` W ) = ( N + 1 ) /\ ( G e. USGraph /\ X e. V /\ ( # ` U ) = N ) ) -> ( W e. Fin <-> ( # ` W ) e. NN0 ) )
24 20 23 mpbird
 |-  ( ( ( # ` W ) = ( N + 1 ) /\ ( G e. USGraph /\ X e. V /\ ( # ` U ) = N ) ) -> W e. Fin )
25 5 6 stgrvtx0
 |-  ( N e. NN0 -> 0 e. W )
26 4 25 ax-mp
 |-  0 e. W
27 hashdifsn
 |-  ( ( W e. Fin /\ 0 e. W ) -> ( # ` ( W \ { 0 } ) ) = ( ( # ` W ) - 1 ) )
28 24 26 27 sylancl
 |-  ( ( ( # ` W ) = ( N + 1 ) /\ ( G e. USGraph /\ X e. V /\ ( # ` U ) = N ) ) -> ( # ` ( W \ { 0 } ) ) = ( ( # ` W ) - 1 ) )
29 simpr3
 |-  ( ( ( # ` W ) = ( N + 1 ) /\ ( G e. USGraph /\ X e. V /\ ( # ` U ) = N ) ) -> ( # ` U ) = N )
30 15 28 29 3eqtr4rd
 |-  ( ( ( # ` W ) = ( N + 1 ) /\ ( G e. USGraph /\ X e. V /\ ( # ` U ) = N ) ) -> ( # ` U ) = ( # ` ( W \ { 0 } ) ) )
31 eleq1
 |-  ( ( # ` U ) = N -> ( ( # ` U ) e. NN0 <-> N e. NN0 ) )
32 4 31 mpbiri
 |-  ( ( # ` U ) = N -> ( # ` U ) e. NN0 )
33 32 3ad2ant3
 |-  ( ( G e. USGraph /\ X e. V /\ ( # ` U ) = N ) -> ( # ` U ) e. NN0 )
34 2 ovexi
 |-  U e. _V
35 hashclb
 |-  ( U e. _V -> ( U e. Fin <-> ( # ` U ) e. NN0 ) )
36 34 35 mp1i
 |-  ( ( G e. USGraph /\ X e. V /\ ( # ` U ) = N ) -> ( U e. Fin <-> ( # ` U ) e. NN0 ) )
37 33 36 mpbird
 |-  ( ( G e. USGraph /\ X e. V /\ ( # ` U ) = N ) -> U e. Fin )
38 diffi
 |-  ( W e. Fin -> ( W \ { 0 } ) e. Fin )
39 24 38 syl
 |-  ( ( ( # ` W ) = ( N + 1 ) /\ ( G e. USGraph /\ X e. V /\ ( # ` U ) = N ) ) -> ( W \ { 0 } ) e. Fin )
40 hasheqf1o
 |-  ( ( U e. Fin /\ ( W \ { 0 } ) e. Fin ) -> ( ( # ` U ) = ( # ` ( W \ { 0 } ) ) <-> E. f f : U -1-1-onto-> ( W \ { 0 } ) ) )
41 37 39 40 syl2an2
 |-  ( ( ( # ` W ) = ( N + 1 ) /\ ( G e. USGraph /\ X e. V /\ ( # ` U ) = N ) ) -> ( ( # ` U ) = ( # ` ( W \ { 0 } ) ) <-> E. f f : U -1-1-onto-> ( W \ { 0 } ) ) )
42 30 41 mpbid
 |-  ( ( ( # ` W ) = ( N + 1 ) /\ ( G e. USGraph /\ X e. V /\ ( # ` U ) = N ) ) -> E. f f : U -1-1-onto-> ( W \ { 0 } ) )
43 8 42 mpan
 |-  ( ( G e. USGraph /\ X e. V /\ ( # ` U ) = N ) -> E. f f : U -1-1-onto-> ( W \ { 0 } ) )