Step |
Hyp |
Ref |
Expression |
1 |
|
isubgr3stgr.v |
|- V = ( Vtx ` G ) |
2 |
|
isubgr3stgr.u |
|- U = ( G NeighbVtx X ) |
3 |
|
isubgr3stgr.c |
|- C = ( G ClNeighbVtx X ) |
4 |
|
isubgr3stgr.n |
|- N e. NN0 |
5 |
|
isubgr3stgr.s |
|- S = ( StarGr ` N ) |
6 |
|
isubgr3stgr.w |
|- W = ( Vtx ` S ) |
7 |
5 6
|
stgrorder |
|- ( N e. NN0 -> ( # ` W ) = ( N + 1 ) ) |
8 |
4 7
|
ax-mp |
|- ( # ` W ) = ( N + 1 ) |
9 |
|
oveq1 |
|- ( ( # ` W ) = ( N + 1 ) -> ( ( # ` W ) - 1 ) = ( ( N + 1 ) - 1 ) ) |
10 |
|
nn0cn |
|- ( N e. NN0 -> N e. CC ) |
11 |
|
pncan1 |
|- ( N e. CC -> ( ( N + 1 ) - 1 ) = N ) |
12 |
10 11
|
syl |
|- ( N e. NN0 -> ( ( N + 1 ) - 1 ) = N ) |
13 |
4 12
|
mp1i |
|- ( ( # ` W ) = ( N + 1 ) -> ( ( N + 1 ) - 1 ) = N ) |
14 |
9 13
|
eqtrd |
|- ( ( # ` W ) = ( N + 1 ) -> ( ( # ` W ) - 1 ) = N ) |
15 |
14
|
adantr |
|- ( ( ( # ` W ) = ( N + 1 ) /\ ( G e. USGraph /\ X e. V /\ ( # ` U ) = N ) ) -> ( ( # ` W ) - 1 ) = N ) |
16 |
|
peano2nn0 |
|- ( N e. NN0 -> ( N + 1 ) e. NN0 ) |
17 |
4 16
|
ax-mp |
|- ( N + 1 ) e. NN0 |
18 |
|
eleq1 |
|- ( ( # ` W ) = ( N + 1 ) -> ( ( # ` W ) e. NN0 <-> ( N + 1 ) e. NN0 ) ) |
19 |
17 18
|
mpbiri |
|- ( ( # ` W ) = ( N + 1 ) -> ( # ` W ) e. NN0 ) |
20 |
19
|
adantr |
|- ( ( ( # ` W ) = ( N + 1 ) /\ ( G e. USGraph /\ X e. V /\ ( # ` U ) = N ) ) -> ( # ` W ) e. NN0 ) |
21 |
6
|
fvexi |
|- W e. _V |
22 |
|
hashclb |
|- ( W e. _V -> ( W e. Fin <-> ( # ` W ) e. NN0 ) ) |
23 |
21 22
|
mp1i |
|- ( ( ( # ` W ) = ( N + 1 ) /\ ( G e. USGraph /\ X e. V /\ ( # ` U ) = N ) ) -> ( W e. Fin <-> ( # ` W ) e. NN0 ) ) |
24 |
20 23
|
mpbird |
|- ( ( ( # ` W ) = ( N + 1 ) /\ ( G e. USGraph /\ X e. V /\ ( # ` U ) = N ) ) -> W e. Fin ) |
25 |
5 6
|
stgrvtx0 |
|- ( N e. NN0 -> 0 e. W ) |
26 |
4 25
|
ax-mp |
|- 0 e. W |
27 |
|
hashdifsn |
|- ( ( W e. Fin /\ 0 e. W ) -> ( # ` ( W \ { 0 } ) ) = ( ( # ` W ) - 1 ) ) |
28 |
24 26 27
|
sylancl |
|- ( ( ( # ` W ) = ( N + 1 ) /\ ( G e. USGraph /\ X e. V /\ ( # ` U ) = N ) ) -> ( # ` ( W \ { 0 } ) ) = ( ( # ` W ) - 1 ) ) |
29 |
|
simpr3 |
|- ( ( ( # ` W ) = ( N + 1 ) /\ ( G e. USGraph /\ X e. V /\ ( # ` U ) = N ) ) -> ( # ` U ) = N ) |
30 |
15 28 29
|
3eqtr4rd |
|- ( ( ( # ` W ) = ( N + 1 ) /\ ( G e. USGraph /\ X e. V /\ ( # ` U ) = N ) ) -> ( # ` U ) = ( # ` ( W \ { 0 } ) ) ) |
31 |
|
eleq1 |
|- ( ( # ` U ) = N -> ( ( # ` U ) e. NN0 <-> N e. NN0 ) ) |
32 |
4 31
|
mpbiri |
|- ( ( # ` U ) = N -> ( # ` U ) e. NN0 ) |
33 |
32
|
3ad2ant3 |
|- ( ( G e. USGraph /\ X e. V /\ ( # ` U ) = N ) -> ( # ` U ) e. NN0 ) |
34 |
2
|
ovexi |
|- U e. _V |
35 |
|
hashclb |
|- ( U e. _V -> ( U e. Fin <-> ( # ` U ) e. NN0 ) ) |
36 |
34 35
|
mp1i |
|- ( ( G e. USGraph /\ X e. V /\ ( # ` U ) = N ) -> ( U e. Fin <-> ( # ` U ) e. NN0 ) ) |
37 |
33 36
|
mpbird |
|- ( ( G e. USGraph /\ X e. V /\ ( # ` U ) = N ) -> U e. Fin ) |
38 |
|
diffi |
|- ( W e. Fin -> ( W \ { 0 } ) e. Fin ) |
39 |
24 38
|
syl |
|- ( ( ( # ` W ) = ( N + 1 ) /\ ( G e. USGraph /\ X e. V /\ ( # ` U ) = N ) ) -> ( W \ { 0 } ) e. Fin ) |
40 |
|
hasheqf1o |
|- ( ( U e. Fin /\ ( W \ { 0 } ) e. Fin ) -> ( ( # ` U ) = ( # ` ( W \ { 0 } ) ) <-> E. f f : U -1-1-onto-> ( W \ { 0 } ) ) ) |
41 |
37 39 40
|
syl2an2 |
|- ( ( ( # ` W ) = ( N + 1 ) /\ ( G e. USGraph /\ X e. V /\ ( # ` U ) = N ) ) -> ( ( # ` U ) = ( # ` ( W \ { 0 } ) ) <-> E. f f : U -1-1-onto-> ( W \ { 0 } ) ) ) |
42 |
30 41
|
mpbid |
|- ( ( ( # ` W ) = ( N + 1 ) /\ ( G e. USGraph /\ X e. V /\ ( # ` U ) = N ) ) -> E. f f : U -1-1-onto-> ( W \ { 0 } ) ) |
43 |
8 42
|
mpan |
|- ( ( G e. USGraph /\ X e. V /\ ( # ` U ) = N ) -> E. f f : U -1-1-onto-> ( W \ { 0 } ) ) |