Metamath Proof Explorer


Theorem isubgr3stgrlem2

Description: Lemma 2 for isubgr3stgr . (Contributed by AV, 16-Sep-2025)

Ref Expression
Hypotheses isubgr3stgr.v V = Vtx G
isubgr3stgr.u U = G NeighbVtx X
isubgr3stgr.c C = G ClNeighbVtx X
isubgr3stgr.n N 0
isubgr3stgr.s No typesetting found for |- S = ( StarGr ` N ) with typecode |-
isubgr3stgr.w W = Vtx S
Assertion isubgr3stgrlem2 G USGraph X V U = N f f : U 1-1 onto W 0

Proof

Step Hyp Ref Expression
1 isubgr3stgr.v V = Vtx G
2 isubgr3stgr.u U = G NeighbVtx X
3 isubgr3stgr.c C = G ClNeighbVtx X
4 isubgr3stgr.n N 0
5 isubgr3stgr.s Could not format S = ( StarGr ` N ) : No typesetting found for |- S = ( StarGr ` N ) with typecode |-
6 isubgr3stgr.w W = Vtx S
7 5 6 stgrorder N 0 W = N + 1
8 4 7 ax-mp W = N + 1
9 oveq1 W = N + 1 W 1 = N + 1 - 1
10 nn0cn N 0 N
11 pncan1 N N + 1 - 1 = N
12 10 11 syl N 0 N + 1 - 1 = N
13 4 12 mp1i W = N + 1 N + 1 - 1 = N
14 9 13 eqtrd W = N + 1 W 1 = N
15 14 adantr W = N + 1 G USGraph X V U = N W 1 = N
16 peano2nn0 N 0 N + 1 0
17 4 16 ax-mp N + 1 0
18 eleq1 W = N + 1 W 0 N + 1 0
19 17 18 mpbiri W = N + 1 W 0
20 19 adantr W = N + 1 G USGraph X V U = N W 0
21 6 fvexi W V
22 hashclb W V W Fin W 0
23 21 22 mp1i W = N + 1 G USGraph X V U = N W Fin W 0
24 20 23 mpbird W = N + 1 G USGraph X V U = N W Fin
25 5 6 stgrvtx0 N 0 0 W
26 4 25 ax-mp 0 W
27 hashdifsn W Fin 0 W W 0 = W 1
28 24 26 27 sylancl W = N + 1 G USGraph X V U = N W 0 = W 1
29 simpr3 W = N + 1 G USGraph X V U = N U = N
30 15 28 29 3eqtr4rd W = N + 1 G USGraph X V U = N U = W 0
31 eleq1 U = N U 0 N 0
32 4 31 mpbiri U = N U 0
33 32 3ad2ant3 G USGraph X V U = N U 0
34 2 ovexi U V
35 hashclb U V U Fin U 0
36 34 35 mp1i G USGraph X V U = N U Fin U 0
37 33 36 mpbird G USGraph X V U = N U Fin
38 diffi W Fin W 0 Fin
39 24 38 syl W = N + 1 G USGraph X V U = N W 0 Fin
40 hasheqf1o U Fin W 0 Fin U = W 0 f f : U 1-1 onto W 0
41 37 39 40 syl2an2 W = N + 1 G USGraph X V U = N U = W 0 f f : U 1-1 onto W 0
42 30 41 mpbid W = N + 1 G USGraph X V U = N f f : U 1-1 onto W 0
43 8 42 mpan G USGraph X V U = N f f : U 1-1 onto W 0