| Step | Hyp | Ref | Expression | 
						
							| 1 |  | itgmulc2nc.1 |  |-  ( ph -> C e. CC ) | 
						
							| 2 |  | itgmulc2nc.2 |  |-  ( ( ph /\ x e. A ) -> B e. V ) | 
						
							| 3 |  | itgmulc2nc.3 |  |-  ( ph -> ( x e. A |-> B ) e. L^1 ) | 
						
							| 4 |  | itgmulc2nc.m |  |-  ( ph -> ( x e. A |-> ( C x. B ) ) e. MblFn ) | 
						
							| 5 |  | itgmulc2nc.4 |  |-  ( ph -> C e. RR ) | 
						
							| 6 |  | itgmulc2nc.5 |  |-  ( ( ph /\ x e. A ) -> B e. RR ) | 
						
							| 7 |  | itgmulc2nc.6 |  |-  ( ph -> 0 <_ C ) | 
						
							| 8 |  | itgmulc2nc.7 |  |-  ( ( ph /\ x e. A ) -> 0 <_ B ) | 
						
							| 9 |  | elrege0 |  |-  ( B e. ( 0 [,) +oo ) <-> ( B e. RR /\ 0 <_ B ) ) | 
						
							| 10 | 6 8 9 | sylanbrc |  |-  ( ( ph /\ x e. A ) -> B e. ( 0 [,) +oo ) ) | 
						
							| 11 |  | 0e0icopnf |  |-  0 e. ( 0 [,) +oo ) | 
						
							| 12 | 11 | a1i |  |-  ( ( ph /\ -. x e. A ) -> 0 e. ( 0 [,) +oo ) ) | 
						
							| 13 | 10 12 | ifclda |  |-  ( ph -> if ( x e. A , B , 0 ) e. ( 0 [,) +oo ) ) | 
						
							| 14 | 13 | adantr |  |-  ( ( ph /\ x e. RR ) -> if ( x e. A , B , 0 ) e. ( 0 [,) +oo ) ) | 
						
							| 15 | 14 | fmpttd |  |-  ( ph -> ( x e. RR |-> if ( x e. A , B , 0 ) ) : RR --> ( 0 [,) +oo ) ) | 
						
							| 16 | 6 8 | iblpos |  |-  ( ph -> ( ( x e. A |-> B ) e. L^1 <-> ( ( x e. A |-> B ) e. MblFn /\ ( S.2 ` ( x e. RR |-> if ( x e. A , B , 0 ) ) ) e. RR ) ) ) | 
						
							| 17 | 3 16 | mpbid |  |-  ( ph -> ( ( x e. A |-> B ) e. MblFn /\ ( S.2 ` ( x e. RR |-> if ( x e. A , B , 0 ) ) ) e. RR ) ) | 
						
							| 18 | 17 | simprd |  |-  ( ph -> ( S.2 ` ( x e. RR |-> if ( x e. A , B , 0 ) ) ) e. RR ) | 
						
							| 19 |  | elrege0 |  |-  ( C e. ( 0 [,) +oo ) <-> ( C e. RR /\ 0 <_ C ) ) | 
						
							| 20 | 5 7 19 | sylanbrc |  |-  ( ph -> C e. ( 0 [,) +oo ) ) | 
						
							| 21 | 15 18 20 | itg2mulc |  |-  ( ph -> ( S.2 ` ( ( RR X. { C } ) oF x. ( x e. RR |-> if ( x e. A , B , 0 ) ) ) ) = ( C x. ( S.2 ` ( x e. RR |-> if ( x e. A , B , 0 ) ) ) ) ) | 
						
							| 22 |  | reex |  |-  RR e. _V | 
						
							| 23 | 22 | a1i |  |-  ( ph -> RR e. _V ) | 
						
							| 24 | 1 | adantr |  |-  ( ( ph /\ x e. RR ) -> C e. CC ) | 
						
							| 25 |  | fconstmpt |  |-  ( RR X. { C } ) = ( x e. RR |-> C ) | 
						
							| 26 | 25 | a1i |  |-  ( ph -> ( RR X. { C } ) = ( x e. RR |-> C ) ) | 
						
							| 27 |  | eqidd |  |-  ( ph -> ( x e. RR |-> if ( x e. A , B , 0 ) ) = ( x e. RR |-> if ( x e. A , B , 0 ) ) ) | 
						
							| 28 | 23 24 14 26 27 | offval2 |  |-  ( ph -> ( ( RR X. { C } ) oF x. ( x e. RR |-> if ( x e. A , B , 0 ) ) ) = ( x e. RR |-> ( C x. if ( x e. A , B , 0 ) ) ) ) | 
						
							| 29 |  | ovif2 |  |-  ( C x. if ( x e. A , B , 0 ) ) = if ( x e. A , ( C x. B ) , ( C x. 0 ) ) | 
						
							| 30 | 1 | mul01d |  |-  ( ph -> ( C x. 0 ) = 0 ) | 
						
							| 31 | 30 | adantr |  |-  ( ( ph /\ x e. RR ) -> ( C x. 0 ) = 0 ) | 
						
							| 32 | 31 | ifeq2d |  |-  ( ( ph /\ x e. RR ) -> if ( x e. A , ( C x. B ) , ( C x. 0 ) ) = if ( x e. A , ( C x. B ) , 0 ) ) | 
						
							| 33 | 29 32 | eqtrid |  |-  ( ( ph /\ x e. RR ) -> ( C x. if ( x e. A , B , 0 ) ) = if ( x e. A , ( C x. B ) , 0 ) ) | 
						
							| 34 | 33 | mpteq2dva |  |-  ( ph -> ( x e. RR |-> ( C x. if ( x e. A , B , 0 ) ) ) = ( x e. RR |-> if ( x e. A , ( C x. B ) , 0 ) ) ) | 
						
							| 35 | 28 34 | eqtrd |  |-  ( ph -> ( ( RR X. { C } ) oF x. ( x e. RR |-> if ( x e. A , B , 0 ) ) ) = ( x e. RR |-> if ( x e. A , ( C x. B ) , 0 ) ) ) | 
						
							| 36 | 35 | fveq2d |  |-  ( ph -> ( S.2 ` ( ( RR X. { C } ) oF x. ( x e. RR |-> if ( x e. A , B , 0 ) ) ) ) = ( S.2 ` ( x e. RR |-> if ( x e. A , ( C x. B ) , 0 ) ) ) ) | 
						
							| 37 | 21 36 | eqtr3d |  |-  ( ph -> ( C x. ( S.2 ` ( x e. RR |-> if ( x e. A , B , 0 ) ) ) ) = ( S.2 ` ( x e. RR |-> if ( x e. A , ( C x. B ) , 0 ) ) ) ) | 
						
							| 38 | 6 3 8 | itgposval |  |-  ( ph -> S. A B _d x = ( S.2 ` ( x e. RR |-> if ( x e. A , B , 0 ) ) ) ) | 
						
							| 39 | 38 | oveq2d |  |-  ( ph -> ( C x. S. A B _d x ) = ( C x. ( S.2 ` ( x e. RR |-> if ( x e. A , B , 0 ) ) ) ) ) | 
						
							| 40 | 5 | adantr |  |-  ( ( ph /\ x e. A ) -> C e. RR ) | 
						
							| 41 | 40 6 | remulcld |  |-  ( ( ph /\ x e. A ) -> ( C x. B ) e. RR ) | 
						
							| 42 | 1 2 3 4 | iblmulc2nc |  |-  ( ph -> ( x e. A |-> ( C x. B ) ) e. L^1 ) | 
						
							| 43 | 7 | adantr |  |-  ( ( ph /\ x e. A ) -> 0 <_ C ) | 
						
							| 44 | 40 6 43 8 | mulge0d |  |-  ( ( ph /\ x e. A ) -> 0 <_ ( C x. B ) ) | 
						
							| 45 | 41 42 44 | itgposval |  |-  ( ph -> S. A ( C x. B ) _d x = ( S.2 ` ( x e. RR |-> if ( x e. A , ( C x. B ) , 0 ) ) ) ) | 
						
							| 46 | 37 39 45 | 3eqtr4d |  |-  ( ph -> ( C x. S. A B _d x ) = S. A ( C x. B ) _d x ) |