Step |
Hyp |
Ref |
Expression |
1 |
|
itgmulc2nc.1 |
|- ( ph -> C e. CC ) |
2 |
|
itgmulc2nc.2 |
|- ( ( ph /\ x e. A ) -> B e. V ) |
3 |
|
itgmulc2nc.3 |
|- ( ph -> ( x e. A |-> B ) e. L^1 ) |
4 |
|
itgmulc2nc.m |
|- ( ph -> ( x e. A |-> ( C x. B ) ) e. MblFn ) |
5 |
|
itgmulc2nc.4 |
|- ( ph -> C e. RR ) |
6 |
|
itgmulc2nc.5 |
|- ( ( ph /\ x e. A ) -> B e. RR ) |
7 |
|
itgmulc2nc.6 |
|- ( ph -> 0 <_ C ) |
8 |
|
itgmulc2nc.7 |
|- ( ( ph /\ x e. A ) -> 0 <_ B ) |
9 |
|
elrege0 |
|- ( B e. ( 0 [,) +oo ) <-> ( B e. RR /\ 0 <_ B ) ) |
10 |
6 8 9
|
sylanbrc |
|- ( ( ph /\ x e. A ) -> B e. ( 0 [,) +oo ) ) |
11 |
|
0e0icopnf |
|- 0 e. ( 0 [,) +oo ) |
12 |
11
|
a1i |
|- ( ( ph /\ -. x e. A ) -> 0 e. ( 0 [,) +oo ) ) |
13 |
10 12
|
ifclda |
|- ( ph -> if ( x e. A , B , 0 ) e. ( 0 [,) +oo ) ) |
14 |
13
|
adantr |
|- ( ( ph /\ x e. RR ) -> if ( x e. A , B , 0 ) e. ( 0 [,) +oo ) ) |
15 |
14
|
fmpttd |
|- ( ph -> ( x e. RR |-> if ( x e. A , B , 0 ) ) : RR --> ( 0 [,) +oo ) ) |
16 |
6 8
|
iblpos |
|- ( ph -> ( ( x e. A |-> B ) e. L^1 <-> ( ( x e. A |-> B ) e. MblFn /\ ( S.2 ` ( x e. RR |-> if ( x e. A , B , 0 ) ) ) e. RR ) ) ) |
17 |
3 16
|
mpbid |
|- ( ph -> ( ( x e. A |-> B ) e. MblFn /\ ( S.2 ` ( x e. RR |-> if ( x e. A , B , 0 ) ) ) e. RR ) ) |
18 |
17
|
simprd |
|- ( ph -> ( S.2 ` ( x e. RR |-> if ( x e. A , B , 0 ) ) ) e. RR ) |
19 |
|
elrege0 |
|- ( C e. ( 0 [,) +oo ) <-> ( C e. RR /\ 0 <_ C ) ) |
20 |
5 7 19
|
sylanbrc |
|- ( ph -> C e. ( 0 [,) +oo ) ) |
21 |
15 18 20
|
itg2mulc |
|- ( ph -> ( S.2 ` ( ( RR X. { C } ) oF x. ( x e. RR |-> if ( x e. A , B , 0 ) ) ) ) = ( C x. ( S.2 ` ( x e. RR |-> if ( x e. A , B , 0 ) ) ) ) ) |
22 |
|
reex |
|- RR e. _V |
23 |
22
|
a1i |
|- ( ph -> RR e. _V ) |
24 |
1
|
adantr |
|- ( ( ph /\ x e. RR ) -> C e. CC ) |
25 |
|
fconstmpt |
|- ( RR X. { C } ) = ( x e. RR |-> C ) |
26 |
25
|
a1i |
|- ( ph -> ( RR X. { C } ) = ( x e. RR |-> C ) ) |
27 |
|
eqidd |
|- ( ph -> ( x e. RR |-> if ( x e. A , B , 0 ) ) = ( x e. RR |-> if ( x e. A , B , 0 ) ) ) |
28 |
23 24 14 26 27
|
offval2 |
|- ( ph -> ( ( RR X. { C } ) oF x. ( x e. RR |-> if ( x e. A , B , 0 ) ) ) = ( x e. RR |-> ( C x. if ( x e. A , B , 0 ) ) ) ) |
29 |
|
ovif2 |
|- ( C x. if ( x e. A , B , 0 ) ) = if ( x e. A , ( C x. B ) , ( C x. 0 ) ) |
30 |
1
|
mul01d |
|- ( ph -> ( C x. 0 ) = 0 ) |
31 |
30
|
adantr |
|- ( ( ph /\ x e. RR ) -> ( C x. 0 ) = 0 ) |
32 |
31
|
ifeq2d |
|- ( ( ph /\ x e. RR ) -> if ( x e. A , ( C x. B ) , ( C x. 0 ) ) = if ( x e. A , ( C x. B ) , 0 ) ) |
33 |
29 32
|
syl5eq |
|- ( ( ph /\ x e. RR ) -> ( C x. if ( x e. A , B , 0 ) ) = if ( x e. A , ( C x. B ) , 0 ) ) |
34 |
33
|
mpteq2dva |
|- ( ph -> ( x e. RR |-> ( C x. if ( x e. A , B , 0 ) ) ) = ( x e. RR |-> if ( x e. A , ( C x. B ) , 0 ) ) ) |
35 |
28 34
|
eqtrd |
|- ( ph -> ( ( RR X. { C } ) oF x. ( x e. RR |-> if ( x e. A , B , 0 ) ) ) = ( x e. RR |-> if ( x e. A , ( C x. B ) , 0 ) ) ) |
36 |
35
|
fveq2d |
|- ( ph -> ( S.2 ` ( ( RR X. { C } ) oF x. ( x e. RR |-> if ( x e. A , B , 0 ) ) ) ) = ( S.2 ` ( x e. RR |-> if ( x e. A , ( C x. B ) , 0 ) ) ) ) |
37 |
21 36
|
eqtr3d |
|- ( ph -> ( C x. ( S.2 ` ( x e. RR |-> if ( x e. A , B , 0 ) ) ) ) = ( S.2 ` ( x e. RR |-> if ( x e. A , ( C x. B ) , 0 ) ) ) ) |
38 |
6 3 8
|
itgposval |
|- ( ph -> S. A B _d x = ( S.2 ` ( x e. RR |-> if ( x e. A , B , 0 ) ) ) ) |
39 |
38
|
oveq2d |
|- ( ph -> ( C x. S. A B _d x ) = ( C x. ( S.2 ` ( x e. RR |-> if ( x e. A , B , 0 ) ) ) ) ) |
40 |
5
|
adantr |
|- ( ( ph /\ x e. A ) -> C e. RR ) |
41 |
40 6
|
remulcld |
|- ( ( ph /\ x e. A ) -> ( C x. B ) e. RR ) |
42 |
1 2 3 4
|
iblmulc2nc |
|- ( ph -> ( x e. A |-> ( C x. B ) ) e. L^1 ) |
43 |
7
|
adantr |
|- ( ( ph /\ x e. A ) -> 0 <_ C ) |
44 |
40 6 43 8
|
mulge0d |
|- ( ( ph /\ x e. A ) -> 0 <_ ( C x. B ) ) |
45 |
41 42 44
|
itgposval |
|- ( ph -> S. A ( C x. B ) _d x = ( S.2 ` ( x e. RR |-> if ( x e. A , ( C x. B ) , 0 ) ) ) ) |
46 |
37 39 45
|
3eqtr4d |
|- ( ph -> ( C x. S. A B _d x ) = S. A ( C x. B ) _d x ) |