| Step |
Hyp |
Ref |
Expression |
| 1 |
|
itgmulc2nc.1 |
|
| 2 |
|
itgmulc2nc.2 |
|
| 3 |
|
itgmulc2nc.3 |
|
| 4 |
|
itgmulc2nc.m |
|
| 5 |
|
itgmulc2nc.4 |
|
| 6 |
|
itgmulc2nc.5 |
|
| 7 |
|
itgmulc2nc.6 |
|
| 8 |
|
itgmulc2nc.7 |
|
| 9 |
|
elrege0 |
|
| 10 |
6 8 9
|
sylanbrc |
|
| 11 |
|
0e0icopnf |
|
| 12 |
11
|
a1i |
|
| 13 |
10 12
|
ifclda |
|
| 14 |
13
|
adantr |
|
| 15 |
14
|
fmpttd |
|
| 16 |
6 8
|
iblpos |
|
| 17 |
3 16
|
mpbid |
|
| 18 |
17
|
simprd |
|
| 19 |
|
elrege0 |
|
| 20 |
5 7 19
|
sylanbrc |
|
| 21 |
15 18 20
|
itg2mulc |
|
| 22 |
|
reex |
|
| 23 |
22
|
a1i |
|
| 24 |
1
|
adantr |
|
| 25 |
|
fconstmpt |
|
| 26 |
25
|
a1i |
|
| 27 |
|
eqidd |
|
| 28 |
23 24 14 26 27
|
offval2 |
|
| 29 |
|
ovif2 |
|
| 30 |
1
|
mul01d |
|
| 31 |
30
|
adantr |
|
| 32 |
31
|
ifeq2d |
|
| 33 |
29 32
|
eqtrid |
|
| 34 |
33
|
mpteq2dva |
|
| 35 |
28 34
|
eqtrd |
|
| 36 |
35
|
fveq2d |
|
| 37 |
21 36
|
eqtr3d |
|
| 38 |
6 3 8
|
itgposval |
|
| 39 |
38
|
oveq2d |
|
| 40 |
5
|
adantr |
|
| 41 |
40 6
|
remulcld |
|
| 42 |
1 2 3 4
|
iblmulc2nc |
|
| 43 |
7
|
adantr |
|
| 44 |
40 6 43 8
|
mulge0d |
|
| 45 |
41 42 44
|
itgposval |
|
| 46 |
37 39 45
|
3eqtr4d |
|