Metamath Proof Explorer


Theorem itgmulc2nclem2

Description: Lemma for itgmulc2nc ; cf. itgmulc2lem2 . (Contributed by Brendan Leahy, 19-Nov-2017)

Ref Expression
Hypotheses itgmulc2nc.1 φ C
itgmulc2nc.2 φ x A B V
itgmulc2nc.3 φ x A B 𝐿 1
itgmulc2nc.m φ x A C B MblFn
itgmulc2nc.4 φ C
itgmulc2nc.5 φ x A B
Assertion itgmulc2nclem2 φ C A B dx = A C B dx

Proof

Step Hyp Ref Expression
1 itgmulc2nc.1 φ C
2 itgmulc2nc.2 φ x A B V
3 itgmulc2nc.3 φ x A B 𝐿 1
4 itgmulc2nc.m φ x A C B MblFn
5 itgmulc2nc.4 φ C
6 itgmulc2nc.5 φ x A B
7 max0sub C if 0 C C 0 if 0 C C 0 = C
8 5 7 syl φ if 0 C C 0 if 0 C C 0 = C
9 8 oveq1d φ if 0 C C 0 if 0 C C 0 B = C B
10 9 adantr φ x A if 0 C C 0 if 0 C C 0 B = C B
11 0re 0
12 ifcl C 0 if 0 C C 0
13 5 11 12 sylancl φ if 0 C C 0
14 13 recnd φ if 0 C C 0
15 14 adantr φ x A if 0 C C 0
16 5 renegcld φ C
17 ifcl C 0 if 0 C C 0
18 16 11 17 sylancl φ if 0 C C 0
19 18 recnd φ if 0 C C 0
20 19 adantr φ x A if 0 C C 0
21 6 recnd φ x A B
22 15 20 21 subdird φ x A if 0 C C 0 if 0 C C 0 B = if 0 C C 0 B if 0 C C 0 B
23 10 22 eqtr3d φ x A C B = if 0 C C 0 B if 0 C C 0 B
24 23 itgeq2dv φ A C B dx = A if 0 C C 0 B if 0 C C 0 B dx
25 ovexd φ x A if 0 C C 0 B V
26 ovexd φ x A C B V
27 4 26 mbfdm2 φ A dom vol
28 13 adantr φ x A if 0 C C 0
29 fconstmpt A × if 0 C C 0 = x A if 0 C C 0
30 29 a1i φ A × if 0 C C 0 = x A if 0 C C 0
31 eqidd φ x A B = x A B
32 27 28 6 30 31 offval2 φ A × if 0 C C 0 × f x A B = x A if 0 C C 0 B
33 iblmbf x A B 𝐿 1 x A B MblFn
34 3 33 syl φ x A B MblFn
35 21 fmpttd φ x A B : A
36 34 13 35 mbfmulc2re φ A × if 0 C C 0 × f x A B MblFn
37 32 36 eqeltrrd φ x A if 0 C C 0 B MblFn
38 14 6 3 37 iblmulc2nc φ x A if 0 C C 0 B 𝐿 1
39 ovexd φ x A if 0 C C 0 B V
40 18 adantr φ x A if 0 C C 0
41 fconstmpt A × if 0 C C 0 = x A if 0 C C 0
42 41 a1i φ A × if 0 C C 0 = x A if 0 C C 0
43 27 40 6 42 31 offval2 φ A × if 0 C C 0 × f x A B = x A if 0 C C 0 B
44 34 18 35 mbfmulc2re φ A × if 0 C C 0 × f x A B MblFn
45 43 44 eqeltrrd φ x A if 0 C C 0 B MblFn
46 19 6 3 45 iblmulc2nc φ x A if 0 C C 0 B 𝐿 1
47 23 mpteq2dva φ x A C B = x A if 0 C C 0 B if 0 C C 0 B
48 47 4 eqeltrrd φ x A if 0 C C 0 B if 0 C C 0 B MblFn
49 25 38 39 46 48 itgsubnc φ A if 0 C C 0 B if 0 C C 0 B dx = A if 0 C C 0 B dx A if 0 C C 0 B dx
50 ovexd φ x A if 0 C C 0 if 0 B B 0 V
51 ifcl B 0 if 0 B B 0
52 6 11 51 sylancl φ x A if 0 B B 0
53 6 iblre φ x A B 𝐿 1 x A if 0 B B 0 𝐿 1 x A if 0 B B 0 𝐿 1
54 3 53 mpbid φ x A if 0 B B 0 𝐿 1 x A if 0 B B 0 𝐿 1
55 54 simpld φ x A if 0 B B 0 𝐿 1
56 eqidd φ x A if 0 B B 0 = x A if 0 B B 0
57 27 28 52 30 56 offval2 φ A × if 0 C C 0 × f x A if 0 B B 0 = x A if 0 C C 0 if 0 B B 0
58 6 34 mbfpos φ x A if 0 B B 0 MblFn
59 52 recnd φ x A if 0 B B 0
60 59 fmpttd φ x A if 0 B B 0 : A
61 58 13 60 mbfmulc2re φ A × if 0 C C 0 × f x A if 0 B B 0 MblFn
62 57 61 eqeltrrd φ x A if 0 C C 0 if 0 B B 0 MblFn
63 14 52 55 62 iblmulc2nc φ x A if 0 C C 0 if 0 B B 0 𝐿 1
64 ovexd φ x A if 0 C C 0 if 0 B B 0 V
65 6 renegcld φ x A B
66 ifcl B 0 if 0 B B 0
67 65 11 66 sylancl φ x A if 0 B B 0
68 54 simprd φ x A if 0 B B 0 𝐿 1
69 eqidd φ x A if 0 B B 0 = x A if 0 B B 0
70 27 28 67 30 69 offval2 φ A × if 0 C C 0 × f x A if 0 B B 0 = x A if 0 C C 0 if 0 B B 0
71 6 34 mbfneg φ x A B MblFn
72 65 71 mbfpos φ x A if 0 B B 0 MblFn
73 67 recnd φ x A if 0 B B 0
74 73 fmpttd φ x A if 0 B B 0 : A
75 72 13 74 mbfmulc2re φ A × if 0 C C 0 × f x A if 0 B B 0 MblFn
76 70 75 eqeltrrd φ x A if 0 C C 0 if 0 B B 0 MblFn
77 14 67 68 76 iblmulc2nc φ x A if 0 C C 0 if 0 B B 0 𝐿 1
78 max0sub B if 0 B B 0 if 0 B B 0 = B
79 6 78 syl φ x A if 0 B B 0 if 0 B B 0 = B
80 79 oveq2d φ x A if 0 C C 0 if 0 B B 0 if 0 B B 0 = if 0 C C 0 B
81 15 59 73 subdid φ x A if 0 C C 0 if 0 B B 0 if 0 B B 0 = if 0 C C 0 if 0 B B 0 if 0 C C 0 if 0 B B 0
82 80 81 eqtr3d φ x A if 0 C C 0 B = if 0 C C 0 if 0 B B 0 if 0 C C 0 if 0 B B 0
83 82 mpteq2dva φ x A if 0 C C 0 B = x A if 0 C C 0 if 0 B B 0 if 0 C C 0 if 0 B B 0
84 32 83 eqtrd φ A × if 0 C C 0 × f x A B = x A if 0 C C 0 if 0 B B 0 if 0 C C 0 if 0 B B 0
85 84 36 eqeltrrd φ x A if 0 C C 0 if 0 B B 0 if 0 C C 0 if 0 B B 0 MblFn
86 50 63 64 77 85 itgsubnc φ A if 0 C C 0 if 0 B B 0 if 0 C C 0 if 0 B B 0 dx = A if 0 C C 0 if 0 B B 0 dx A if 0 C C 0 if 0 B B 0 dx
87 82 itgeq2dv φ A if 0 C C 0 B dx = A if 0 C C 0 if 0 B B 0 if 0 C C 0 if 0 B B 0 dx
88 6 3 itgreval φ A B dx = A if 0 B B 0 dx A if 0 B B 0 dx
89 88 oveq2d φ if 0 C C 0 A B dx = if 0 C C 0 A if 0 B B 0 dx A if 0 B B 0 dx
90 52 55 itgcl φ A if 0 B B 0 dx
91 67 68 itgcl φ A if 0 B B 0 dx
92 14 90 91 subdid φ if 0 C C 0 A if 0 B B 0 dx A if 0 B B 0 dx = if 0 C C 0 A if 0 B B 0 dx if 0 C C 0 A if 0 B B 0 dx
93 max1 0 C 0 if 0 C C 0
94 11 5 93 sylancr φ 0 if 0 C C 0
95 max1 0 B 0 if 0 B B 0
96 11 6 95 sylancr φ x A 0 if 0 B B 0
97 14 52 55 62 13 52 94 96 itgmulc2nclem1 φ if 0 C C 0 A if 0 B B 0 dx = A if 0 C C 0 if 0 B B 0 dx
98 max1 0 B 0 if 0 B B 0
99 11 65 98 sylancr φ x A 0 if 0 B B 0
100 14 67 68 76 13 67 94 99 itgmulc2nclem1 φ if 0 C C 0 A if 0 B B 0 dx = A if 0 C C 0 if 0 B B 0 dx
101 97 100 oveq12d φ if 0 C C 0 A if 0 B B 0 dx if 0 C C 0 A if 0 B B 0 dx = A if 0 C C 0 if 0 B B 0 dx A if 0 C C 0 if 0 B B 0 dx
102 89 92 101 3eqtrd φ if 0 C C 0 A B dx = A if 0 C C 0 if 0 B B 0 dx A if 0 C C 0 if 0 B B 0 dx
103 86 87 102 3eqtr4d φ A if 0 C C 0 B dx = if 0 C C 0 A B dx
104 ovexd φ x A if 0 C C 0 if 0 B B 0 V
105 27 40 52 42 56 offval2 φ A × if 0 C C 0 × f x A if 0 B B 0 = x A if 0 C C 0 if 0 B B 0
106 58 18 60 mbfmulc2re φ A × if 0 C C 0 × f x A if 0 B B 0 MblFn
107 105 106 eqeltrrd φ x A if 0 C C 0 if 0 B B 0 MblFn
108 19 52 55 107 iblmulc2nc φ x A if 0 C C 0 if 0 B B 0 𝐿 1
109 ovexd φ x A if 0 C C 0 if 0 B B 0 V
110 27 40 67 42 69 offval2 φ A × if 0 C C 0 × f x A if 0 B B 0 = x A if 0 C C 0 if 0 B B 0
111 72 18 74 mbfmulc2re φ A × if 0 C C 0 × f x A if 0 B B 0 MblFn
112 110 111 eqeltrrd φ x A if 0 C C 0 if 0 B B 0 MblFn
113 19 67 68 112 iblmulc2nc φ x A if 0 C C 0 if 0 B B 0 𝐿 1
114 79 oveq2d φ x A if 0 C C 0 if 0 B B 0 if 0 B B 0 = if 0 C C 0 B
115 20 59 73 subdid φ x A if 0 C C 0 if 0 B B 0 if 0 B B 0 = if 0 C C 0 if 0 B B 0 if 0 C C 0 if 0 B B 0
116 114 115 eqtr3d φ x A if 0 C C 0 B = if 0 C C 0 if 0 B B 0 if 0 C C 0 if 0 B B 0
117 116 mpteq2dva φ x A if 0 C C 0 B = x A if 0 C C 0 if 0 B B 0 if 0 C C 0 if 0 B B 0
118 43 117 eqtrd φ A × if 0 C C 0 × f x A B = x A if 0 C C 0 if 0 B B 0 if 0 C C 0 if 0 B B 0
119 118 44 eqeltrrd φ x A if 0 C C 0 if 0 B B 0 if 0 C C 0 if 0 B B 0 MblFn
120 104 108 109 113 119 itgsubnc φ A if 0 C C 0 if 0 B B 0 if 0 C C 0 if 0 B B 0 dx = A if 0 C C 0 if 0 B B 0 dx A if 0 C C 0 if 0 B B 0 dx
121 116 itgeq2dv φ A if 0 C C 0 B dx = A if 0 C C 0 if 0 B B 0 if 0 C C 0 if 0 B B 0 dx
122 88 oveq2d φ if 0 C C 0 A B dx = if 0 C C 0 A if 0 B B 0 dx A if 0 B B 0 dx
123 19 90 91 subdid φ if 0 C C 0 A if 0 B B 0 dx A if 0 B B 0 dx = if 0 C C 0 A if 0 B B 0 dx if 0 C C 0 A if 0 B B 0 dx
124 max1 0 C 0 if 0 C C 0
125 11 16 124 sylancr φ 0 if 0 C C 0
126 19 52 55 107 18 52 125 96 itgmulc2nclem1 φ if 0 C C 0 A if 0 B B 0 dx = A if 0 C C 0 if 0 B B 0 dx
127 19 67 68 112 18 67 125 99 itgmulc2nclem1 φ if 0 C C 0 A if 0 B B 0 dx = A if 0 C C 0 if 0 B B 0 dx
128 126 127 oveq12d φ if 0 C C 0 A if 0 B B 0 dx if 0 C C 0 A if 0 B B 0 dx = A if 0 C C 0 if 0 B B 0 dx A if 0 C C 0 if 0 B B 0 dx
129 122 123 128 3eqtrd φ if 0 C C 0 A B dx = A if 0 C C 0 if 0 B B 0 dx A if 0 C C 0 if 0 B B 0 dx
130 120 121 129 3eqtr4d φ A if 0 C C 0 B dx = if 0 C C 0 A B dx
131 103 130 oveq12d φ A if 0 C C 0 B dx A if 0 C C 0 B dx = if 0 C C 0 A B dx if 0 C C 0 A B dx
132 6 3 itgcl φ A B dx
133 14 19 132 subdird φ if 0 C C 0 if 0 C C 0 A B dx = if 0 C C 0 A B dx if 0 C C 0 A B dx
134 8 oveq1d φ if 0 C C 0 if 0 C C 0 A B dx = C A B dx
135 131 133 134 3eqtr2d φ A if 0 C C 0 B dx A if 0 C C 0 B dx = C A B dx
136 24 49 135 3eqtrrd φ C A B dx = A C B dx