Step |
Hyp |
Ref |
Expression |
1 |
|
itgmulc2nc.1 |
⊢ ( 𝜑 → 𝐶 ∈ ℂ ) |
2 |
|
itgmulc2nc.2 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ 𝑉 ) |
3 |
|
itgmulc2nc.3 |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ 𝐿1 ) |
4 |
|
itgmulc2nc.m |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ ( 𝐶 · 𝐵 ) ) ∈ MblFn ) |
5 |
|
itgmulc2nc.4 |
⊢ ( 𝜑 → 𝐶 ∈ ℝ ) |
6 |
|
itgmulc2nc.5 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ ℝ ) |
7 |
|
max0sub |
⊢ ( 𝐶 ∈ ℝ → ( if ( 0 ≤ 𝐶 , 𝐶 , 0 ) − if ( 0 ≤ - 𝐶 , - 𝐶 , 0 ) ) = 𝐶 ) |
8 |
5 7
|
syl |
⊢ ( 𝜑 → ( if ( 0 ≤ 𝐶 , 𝐶 , 0 ) − if ( 0 ≤ - 𝐶 , - 𝐶 , 0 ) ) = 𝐶 ) |
9 |
8
|
oveq1d |
⊢ ( 𝜑 → ( ( if ( 0 ≤ 𝐶 , 𝐶 , 0 ) − if ( 0 ≤ - 𝐶 , - 𝐶 , 0 ) ) · 𝐵 ) = ( 𝐶 · 𝐵 ) ) |
10 |
9
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ( if ( 0 ≤ 𝐶 , 𝐶 , 0 ) − if ( 0 ≤ - 𝐶 , - 𝐶 , 0 ) ) · 𝐵 ) = ( 𝐶 · 𝐵 ) ) |
11 |
|
0re |
⊢ 0 ∈ ℝ |
12 |
|
ifcl |
⊢ ( ( 𝐶 ∈ ℝ ∧ 0 ∈ ℝ ) → if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ∈ ℝ ) |
13 |
5 11 12
|
sylancl |
⊢ ( 𝜑 → if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ∈ ℝ ) |
14 |
13
|
recnd |
⊢ ( 𝜑 → if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ∈ ℂ ) |
15 |
14
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ∈ ℂ ) |
16 |
5
|
renegcld |
⊢ ( 𝜑 → - 𝐶 ∈ ℝ ) |
17 |
|
ifcl |
⊢ ( ( - 𝐶 ∈ ℝ ∧ 0 ∈ ℝ ) → if ( 0 ≤ - 𝐶 , - 𝐶 , 0 ) ∈ ℝ ) |
18 |
16 11 17
|
sylancl |
⊢ ( 𝜑 → if ( 0 ≤ - 𝐶 , - 𝐶 , 0 ) ∈ ℝ ) |
19 |
18
|
recnd |
⊢ ( 𝜑 → if ( 0 ≤ - 𝐶 , - 𝐶 , 0 ) ∈ ℂ ) |
20 |
19
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → if ( 0 ≤ - 𝐶 , - 𝐶 , 0 ) ∈ ℂ ) |
21 |
6
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ ℂ ) |
22 |
15 20 21
|
subdird |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ( if ( 0 ≤ 𝐶 , 𝐶 , 0 ) − if ( 0 ≤ - 𝐶 , - 𝐶 , 0 ) ) · 𝐵 ) = ( ( if ( 0 ≤ 𝐶 , 𝐶 , 0 ) · 𝐵 ) − ( if ( 0 ≤ - 𝐶 , - 𝐶 , 0 ) · 𝐵 ) ) ) |
23 |
10 22
|
eqtr3d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝐶 · 𝐵 ) = ( ( if ( 0 ≤ 𝐶 , 𝐶 , 0 ) · 𝐵 ) − ( if ( 0 ≤ - 𝐶 , - 𝐶 , 0 ) · 𝐵 ) ) ) |
24 |
23
|
itgeq2dv |
⊢ ( 𝜑 → ∫ 𝐴 ( 𝐶 · 𝐵 ) d 𝑥 = ∫ 𝐴 ( ( if ( 0 ≤ 𝐶 , 𝐶 , 0 ) · 𝐵 ) − ( if ( 0 ≤ - 𝐶 , - 𝐶 , 0 ) · 𝐵 ) ) d 𝑥 ) |
25 |
|
ovexd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( if ( 0 ≤ 𝐶 , 𝐶 , 0 ) · 𝐵 ) ∈ V ) |
26 |
|
ovexd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝐶 · 𝐵 ) ∈ V ) |
27 |
4 26
|
mbfdm2 |
⊢ ( 𝜑 → 𝐴 ∈ dom vol ) |
28 |
13
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ∈ ℝ ) |
29 |
|
fconstmpt |
⊢ ( 𝐴 × { if ( 0 ≤ 𝐶 , 𝐶 , 0 ) } ) = ( 𝑥 ∈ 𝐴 ↦ if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) |
30 |
29
|
a1i |
⊢ ( 𝜑 → ( 𝐴 × { if ( 0 ≤ 𝐶 , 𝐶 , 0 ) } ) = ( 𝑥 ∈ 𝐴 ↦ if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) ) |
31 |
|
eqidd |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) = ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) |
32 |
27 28 6 30 31
|
offval2 |
⊢ ( 𝜑 → ( ( 𝐴 × { if ( 0 ≤ 𝐶 , 𝐶 , 0 ) } ) ∘f · ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) = ( 𝑥 ∈ 𝐴 ↦ ( if ( 0 ≤ 𝐶 , 𝐶 , 0 ) · 𝐵 ) ) ) |
33 |
|
iblmbf |
⊢ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ 𝐿1 → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ MblFn ) |
34 |
3 33
|
syl |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ MblFn ) |
35 |
21
|
fmpttd |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) : 𝐴 ⟶ ℂ ) |
36 |
34 13 35
|
mbfmulc2re |
⊢ ( 𝜑 → ( ( 𝐴 × { if ( 0 ≤ 𝐶 , 𝐶 , 0 ) } ) ∘f · ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) ∈ MblFn ) |
37 |
32 36
|
eqeltrrd |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ ( if ( 0 ≤ 𝐶 , 𝐶 , 0 ) · 𝐵 ) ) ∈ MblFn ) |
38 |
14 6 3 37
|
iblmulc2nc |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ ( if ( 0 ≤ 𝐶 , 𝐶 , 0 ) · 𝐵 ) ) ∈ 𝐿1 ) |
39 |
|
ovexd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( if ( 0 ≤ - 𝐶 , - 𝐶 , 0 ) · 𝐵 ) ∈ V ) |
40 |
18
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → if ( 0 ≤ - 𝐶 , - 𝐶 , 0 ) ∈ ℝ ) |
41 |
|
fconstmpt |
⊢ ( 𝐴 × { if ( 0 ≤ - 𝐶 , - 𝐶 , 0 ) } ) = ( 𝑥 ∈ 𝐴 ↦ if ( 0 ≤ - 𝐶 , - 𝐶 , 0 ) ) |
42 |
41
|
a1i |
⊢ ( 𝜑 → ( 𝐴 × { if ( 0 ≤ - 𝐶 , - 𝐶 , 0 ) } ) = ( 𝑥 ∈ 𝐴 ↦ if ( 0 ≤ - 𝐶 , - 𝐶 , 0 ) ) ) |
43 |
27 40 6 42 31
|
offval2 |
⊢ ( 𝜑 → ( ( 𝐴 × { if ( 0 ≤ - 𝐶 , - 𝐶 , 0 ) } ) ∘f · ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) = ( 𝑥 ∈ 𝐴 ↦ ( if ( 0 ≤ - 𝐶 , - 𝐶 , 0 ) · 𝐵 ) ) ) |
44 |
34 18 35
|
mbfmulc2re |
⊢ ( 𝜑 → ( ( 𝐴 × { if ( 0 ≤ - 𝐶 , - 𝐶 , 0 ) } ) ∘f · ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) ∈ MblFn ) |
45 |
43 44
|
eqeltrrd |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ ( if ( 0 ≤ - 𝐶 , - 𝐶 , 0 ) · 𝐵 ) ) ∈ MblFn ) |
46 |
19 6 3 45
|
iblmulc2nc |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ ( if ( 0 ≤ - 𝐶 , - 𝐶 , 0 ) · 𝐵 ) ) ∈ 𝐿1 ) |
47 |
23
|
mpteq2dva |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ ( 𝐶 · 𝐵 ) ) = ( 𝑥 ∈ 𝐴 ↦ ( ( if ( 0 ≤ 𝐶 , 𝐶 , 0 ) · 𝐵 ) − ( if ( 0 ≤ - 𝐶 , - 𝐶 , 0 ) · 𝐵 ) ) ) ) |
48 |
47 4
|
eqeltrrd |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ ( ( if ( 0 ≤ 𝐶 , 𝐶 , 0 ) · 𝐵 ) − ( if ( 0 ≤ - 𝐶 , - 𝐶 , 0 ) · 𝐵 ) ) ) ∈ MblFn ) |
49 |
25 38 39 46 48
|
itgsubnc |
⊢ ( 𝜑 → ∫ 𝐴 ( ( if ( 0 ≤ 𝐶 , 𝐶 , 0 ) · 𝐵 ) − ( if ( 0 ≤ - 𝐶 , - 𝐶 , 0 ) · 𝐵 ) ) d 𝑥 = ( ∫ 𝐴 ( if ( 0 ≤ 𝐶 , 𝐶 , 0 ) · 𝐵 ) d 𝑥 − ∫ 𝐴 ( if ( 0 ≤ - 𝐶 , - 𝐶 , 0 ) · 𝐵 ) d 𝑥 ) ) |
50 |
|
ovexd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( if ( 0 ≤ 𝐶 , 𝐶 , 0 ) · if ( 0 ≤ 𝐵 , 𝐵 , 0 ) ) ∈ V ) |
51 |
|
ifcl |
⊢ ( ( 𝐵 ∈ ℝ ∧ 0 ∈ ℝ ) → if ( 0 ≤ 𝐵 , 𝐵 , 0 ) ∈ ℝ ) |
52 |
6 11 51
|
sylancl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → if ( 0 ≤ 𝐵 , 𝐵 , 0 ) ∈ ℝ ) |
53 |
6
|
iblre |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ 𝐿1 ↔ ( ( 𝑥 ∈ 𝐴 ↦ if ( 0 ≤ 𝐵 , 𝐵 , 0 ) ) ∈ 𝐿1 ∧ ( 𝑥 ∈ 𝐴 ↦ if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) ) ∈ 𝐿1 ) ) ) |
54 |
3 53
|
mpbid |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ↦ if ( 0 ≤ 𝐵 , 𝐵 , 0 ) ) ∈ 𝐿1 ∧ ( 𝑥 ∈ 𝐴 ↦ if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) ) ∈ 𝐿1 ) ) |
55 |
54
|
simpld |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ if ( 0 ≤ 𝐵 , 𝐵 , 0 ) ) ∈ 𝐿1 ) |
56 |
|
eqidd |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ if ( 0 ≤ 𝐵 , 𝐵 , 0 ) ) = ( 𝑥 ∈ 𝐴 ↦ if ( 0 ≤ 𝐵 , 𝐵 , 0 ) ) ) |
57 |
27 28 52 30 56
|
offval2 |
⊢ ( 𝜑 → ( ( 𝐴 × { if ( 0 ≤ 𝐶 , 𝐶 , 0 ) } ) ∘f · ( 𝑥 ∈ 𝐴 ↦ if ( 0 ≤ 𝐵 , 𝐵 , 0 ) ) ) = ( 𝑥 ∈ 𝐴 ↦ ( if ( 0 ≤ 𝐶 , 𝐶 , 0 ) · if ( 0 ≤ 𝐵 , 𝐵 , 0 ) ) ) ) |
58 |
6 34
|
mbfpos |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ if ( 0 ≤ 𝐵 , 𝐵 , 0 ) ) ∈ MblFn ) |
59 |
52
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → if ( 0 ≤ 𝐵 , 𝐵 , 0 ) ∈ ℂ ) |
60 |
59
|
fmpttd |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ if ( 0 ≤ 𝐵 , 𝐵 , 0 ) ) : 𝐴 ⟶ ℂ ) |
61 |
58 13 60
|
mbfmulc2re |
⊢ ( 𝜑 → ( ( 𝐴 × { if ( 0 ≤ 𝐶 , 𝐶 , 0 ) } ) ∘f · ( 𝑥 ∈ 𝐴 ↦ if ( 0 ≤ 𝐵 , 𝐵 , 0 ) ) ) ∈ MblFn ) |
62 |
57 61
|
eqeltrrd |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ ( if ( 0 ≤ 𝐶 , 𝐶 , 0 ) · if ( 0 ≤ 𝐵 , 𝐵 , 0 ) ) ) ∈ MblFn ) |
63 |
14 52 55 62
|
iblmulc2nc |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ ( if ( 0 ≤ 𝐶 , 𝐶 , 0 ) · if ( 0 ≤ 𝐵 , 𝐵 , 0 ) ) ) ∈ 𝐿1 ) |
64 |
|
ovexd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( if ( 0 ≤ 𝐶 , 𝐶 , 0 ) · if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) ) ∈ V ) |
65 |
6
|
renegcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → - 𝐵 ∈ ℝ ) |
66 |
|
ifcl |
⊢ ( ( - 𝐵 ∈ ℝ ∧ 0 ∈ ℝ ) → if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) ∈ ℝ ) |
67 |
65 11 66
|
sylancl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) ∈ ℝ ) |
68 |
54
|
simprd |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) ) ∈ 𝐿1 ) |
69 |
|
eqidd |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) ) = ( 𝑥 ∈ 𝐴 ↦ if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) ) ) |
70 |
27 28 67 30 69
|
offval2 |
⊢ ( 𝜑 → ( ( 𝐴 × { if ( 0 ≤ 𝐶 , 𝐶 , 0 ) } ) ∘f · ( 𝑥 ∈ 𝐴 ↦ if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) ) ) = ( 𝑥 ∈ 𝐴 ↦ ( if ( 0 ≤ 𝐶 , 𝐶 , 0 ) · if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) ) ) ) |
71 |
6 34
|
mbfneg |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ - 𝐵 ) ∈ MblFn ) |
72 |
65 71
|
mbfpos |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) ) ∈ MblFn ) |
73 |
67
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) ∈ ℂ ) |
74 |
73
|
fmpttd |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) ) : 𝐴 ⟶ ℂ ) |
75 |
72 13 74
|
mbfmulc2re |
⊢ ( 𝜑 → ( ( 𝐴 × { if ( 0 ≤ 𝐶 , 𝐶 , 0 ) } ) ∘f · ( 𝑥 ∈ 𝐴 ↦ if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) ) ) ∈ MblFn ) |
76 |
70 75
|
eqeltrrd |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ ( if ( 0 ≤ 𝐶 , 𝐶 , 0 ) · if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) ) ) ∈ MblFn ) |
77 |
14 67 68 76
|
iblmulc2nc |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ ( if ( 0 ≤ 𝐶 , 𝐶 , 0 ) · if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) ) ) ∈ 𝐿1 ) |
78 |
|
max0sub |
⊢ ( 𝐵 ∈ ℝ → ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) − if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) ) = 𝐵 ) |
79 |
6 78
|
syl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) − if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) ) = 𝐵 ) |
80 |
79
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( if ( 0 ≤ 𝐶 , 𝐶 , 0 ) · ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) − if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) ) ) = ( if ( 0 ≤ 𝐶 , 𝐶 , 0 ) · 𝐵 ) ) |
81 |
15 59 73
|
subdid |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( if ( 0 ≤ 𝐶 , 𝐶 , 0 ) · ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) − if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) ) ) = ( ( if ( 0 ≤ 𝐶 , 𝐶 , 0 ) · if ( 0 ≤ 𝐵 , 𝐵 , 0 ) ) − ( if ( 0 ≤ 𝐶 , 𝐶 , 0 ) · if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) ) ) ) |
82 |
80 81
|
eqtr3d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( if ( 0 ≤ 𝐶 , 𝐶 , 0 ) · 𝐵 ) = ( ( if ( 0 ≤ 𝐶 , 𝐶 , 0 ) · if ( 0 ≤ 𝐵 , 𝐵 , 0 ) ) − ( if ( 0 ≤ 𝐶 , 𝐶 , 0 ) · if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) ) ) ) |
83 |
82
|
mpteq2dva |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ ( if ( 0 ≤ 𝐶 , 𝐶 , 0 ) · 𝐵 ) ) = ( 𝑥 ∈ 𝐴 ↦ ( ( if ( 0 ≤ 𝐶 , 𝐶 , 0 ) · if ( 0 ≤ 𝐵 , 𝐵 , 0 ) ) − ( if ( 0 ≤ 𝐶 , 𝐶 , 0 ) · if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) ) ) ) ) |
84 |
32 83
|
eqtrd |
⊢ ( 𝜑 → ( ( 𝐴 × { if ( 0 ≤ 𝐶 , 𝐶 , 0 ) } ) ∘f · ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) = ( 𝑥 ∈ 𝐴 ↦ ( ( if ( 0 ≤ 𝐶 , 𝐶 , 0 ) · if ( 0 ≤ 𝐵 , 𝐵 , 0 ) ) − ( if ( 0 ≤ 𝐶 , 𝐶 , 0 ) · if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) ) ) ) ) |
85 |
84 36
|
eqeltrrd |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ ( ( if ( 0 ≤ 𝐶 , 𝐶 , 0 ) · if ( 0 ≤ 𝐵 , 𝐵 , 0 ) ) − ( if ( 0 ≤ 𝐶 , 𝐶 , 0 ) · if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) ) ) ) ∈ MblFn ) |
86 |
50 63 64 77 85
|
itgsubnc |
⊢ ( 𝜑 → ∫ 𝐴 ( ( if ( 0 ≤ 𝐶 , 𝐶 , 0 ) · if ( 0 ≤ 𝐵 , 𝐵 , 0 ) ) − ( if ( 0 ≤ 𝐶 , 𝐶 , 0 ) · if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) ) ) d 𝑥 = ( ∫ 𝐴 ( if ( 0 ≤ 𝐶 , 𝐶 , 0 ) · if ( 0 ≤ 𝐵 , 𝐵 , 0 ) ) d 𝑥 − ∫ 𝐴 ( if ( 0 ≤ 𝐶 , 𝐶 , 0 ) · if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) ) d 𝑥 ) ) |
87 |
82
|
itgeq2dv |
⊢ ( 𝜑 → ∫ 𝐴 ( if ( 0 ≤ 𝐶 , 𝐶 , 0 ) · 𝐵 ) d 𝑥 = ∫ 𝐴 ( ( if ( 0 ≤ 𝐶 , 𝐶 , 0 ) · if ( 0 ≤ 𝐵 , 𝐵 , 0 ) ) − ( if ( 0 ≤ 𝐶 , 𝐶 , 0 ) · if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) ) ) d 𝑥 ) |
88 |
6 3
|
itgreval |
⊢ ( 𝜑 → ∫ 𝐴 𝐵 d 𝑥 = ( ∫ 𝐴 if ( 0 ≤ 𝐵 , 𝐵 , 0 ) d 𝑥 − ∫ 𝐴 if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) d 𝑥 ) ) |
89 |
88
|
oveq2d |
⊢ ( 𝜑 → ( if ( 0 ≤ 𝐶 , 𝐶 , 0 ) · ∫ 𝐴 𝐵 d 𝑥 ) = ( if ( 0 ≤ 𝐶 , 𝐶 , 0 ) · ( ∫ 𝐴 if ( 0 ≤ 𝐵 , 𝐵 , 0 ) d 𝑥 − ∫ 𝐴 if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) d 𝑥 ) ) ) |
90 |
52 55
|
itgcl |
⊢ ( 𝜑 → ∫ 𝐴 if ( 0 ≤ 𝐵 , 𝐵 , 0 ) d 𝑥 ∈ ℂ ) |
91 |
67 68
|
itgcl |
⊢ ( 𝜑 → ∫ 𝐴 if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) d 𝑥 ∈ ℂ ) |
92 |
14 90 91
|
subdid |
⊢ ( 𝜑 → ( if ( 0 ≤ 𝐶 , 𝐶 , 0 ) · ( ∫ 𝐴 if ( 0 ≤ 𝐵 , 𝐵 , 0 ) d 𝑥 − ∫ 𝐴 if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) d 𝑥 ) ) = ( ( if ( 0 ≤ 𝐶 , 𝐶 , 0 ) · ∫ 𝐴 if ( 0 ≤ 𝐵 , 𝐵 , 0 ) d 𝑥 ) − ( if ( 0 ≤ 𝐶 , 𝐶 , 0 ) · ∫ 𝐴 if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) d 𝑥 ) ) ) |
93 |
|
max1 |
⊢ ( ( 0 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → 0 ≤ if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) |
94 |
11 5 93
|
sylancr |
⊢ ( 𝜑 → 0 ≤ if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) |
95 |
|
max1 |
⊢ ( ( 0 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → 0 ≤ if ( 0 ≤ 𝐵 , 𝐵 , 0 ) ) |
96 |
11 6 95
|
sylancr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 0 ≤ if ( 0 ≤ 𝐵 , 𝐵 , 0 ) ) |
97 |
14 52 55 62 13 52 94 96
|
itgmulc2nclem1 |
⊢ ( 𝜑 → ( if ( 0 ≤ 𝐶 , 𝐶 , 0 ) · ∫ 𝐴 if ( 0 ≤ 𝐵 , 𝐵 , 0 ) d 𝑥 ) = ∫ 𝐴 ( if ( 0 ≤ 𝐶 , 𝐶 , 0 ) · if ( 0 ≤ 𝐵 , 𝐵 , 0 ) ) d 𝑥 ) |
98 |
|
max1 |
⊢ ( ( 0 ∈ ℝ ∧ - 𝐵 ∈ ℝ ) → 0 ≤ if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) ) |
99 |
11 65 98
|
sylancr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 0 ≤ if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) ) |
100 |
14 67 68 76 13 67 94 99
|
itgmulc2nclem1 |
⊢ ( 𝜑 → ( if ( 0 ≤ 𝐶 , 𝐶 , 0 ) · ∫ 𝐴 if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) d 𝑥 ) = ∫ 𝐴 ( if ( 0 ≤ 𝐶 , 𝐶 , 0 ) · if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) ) d 𝑥 ) |
101 |
97 100
|
oveq12d |
⊢ ( 𝜑 → ( ( if ( 0 ≤ 𝐶 , 𝐶 , 0 ) · ∫ 𝐴 if ( 0 ≤ 𝐵 , 𝐵 , 0 ) d 𝑥 ) − ( if ( 0 ≤ 𝐶 , 𝐶 , 0 ) · ∫ 𝐴 if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) d 𝑥 ) ) = ( ∫ 𝐴 ( if ( 0 ≤ 𝐶 , 𝐶 , 0 ) · if ( 0 ≤ 𝐵 , 𝐵 , 0 ) ) d 𝑥 − ∫ 𝐴 ( if ( 0 ≤ 𝐶 , 𝐶 , 0 ) · if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) ) d 𝑥 ) ) |
102 |
89 92 101
|
3eqtrd |
⊢ ( 𝜑 → ( if ( 0 ≤ 𝐶 , 𝐶 , 0 ) · ∫ 𝐴 𝐵 d 𝑥 ) = ( ∫ 𝐴 ( if ( 0 ≤ 𝐶 , 𝐶 , 0 ) · if ( 0 ≤ 𝐵 , 𝐵 , 0 ) ) d 𝑥 − ∫ 𝐴 ( if ( 0 ≤ 𝐶 , 𝐶 , 0 ) · if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) ) d 𝑥 ) ) |
103 |
86 87 102
|
3eqtr4d |
⊢ ( 𝜑 → ∫ 𝐴 ( if ( 0 ≤ 𝐶 , 𝐶 , 0 ) · 𝐵 ) d 𝑥 = ( if ( 0 ≤ 𝐶 , 𝐶 , 0 ) · ∫ 𝐴 𝐵 d 𝑥 ) ) |
104 |
|
ovexd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( if ( 0 ≤ - 𝐶 , - 𝐶 , 0 ) · if ( 0 ≤ 𝐵 , 𝐵 , 0 ) ) ∈ V ) |
105 |
27 40 52 42 56
|
offval2 |
⊢ ( 𝜑 → ( ( 𝐴 × { if ( 0 ≤ - 𝐶 , - 𝐶 , 0 ) } ) ∘f · ( 𝑥 ∈ 𝐴 ↦ if ( 0 ≤ 𝐵 , 𝐵 , 0 ) ) ) = ( 𝑥 ∈ 𝐴 ↦ ( if ( 0 ≤ - 𝐶 , - 𝐶 , 0 ) · if ( 0 ≤ 𝐵 , 𝐵 , 0 ) ) ) ) |
106 |
58 18 60
|
mbfmulc2re |
⊢ ( 𝜑 → ( ( 𝐴 × { if ( 0 ≤ - 𝐶 , - 𝐶 , 0 ) } ) ∘f · ( 𝑥 ∈ 𝐴 ↦ if ( 0 ≤ 𝐵 , 𝐵 , 0 ) ) ) ∈ MblFn ) |
107 |
105 106
|
eqeltrrd |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ ( if ( 0 ≤ - 𝐶 , - 𝐶 , 0 ) · if ( 0 ≤ 𝐵 , 𝐵 , 0 ) ) ) ∈ MblFn ) |
108 |
19 52 55 107
|
iblmulc2nc |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ ( if ( 0 ≤ - 𝐶 , - 𝐶 , 0 ) · if ( 0 ≤ 𝐵 , 𝐵 , 0 ) ) ) ∈ 𝐿1 ) |
109 |
|
ovexd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( if ( 0 ≤ - 𝐶 , - 𝐶 , 0 ) · if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) ) ∈ V ) |
110 |
27 40 67 42 69
|
offval2 |
⊢ ( 𝜑 → ( ( 𝐴 × { if ( 0 ≤ - 𝐶 , - 𝐶 , 0 ) } ) ∘f · ( 𝑥 ∈ 𝐴 ↦ if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) ) ) = ( 𝑥 ∈ 𝐴 ↦ ( if ( 0 ≤ - 𝐶 , - 𝐶 , 0 ) · if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) ) ) ) |
111 |
72 18 74
|
mbfmulc2re |
⊢ ( 𝜑 → ( ( 𝐴 × { if ( 0 ≤ - 𝐶 , - 𝐶 , 0 ) } ) ∘f · ( 𝑥 ∈ 𝐴 ↦ if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) ) ) ∈ MblFn ) |
112 |
110 111
|
eqeltrrd |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ ( if ( 0 ≤ - 𝐶 , - 𝐶 , 0 ) · if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) ) ) ∈ MblFn ) |
113 |
19 67 68 112
|
iblmulc2nc |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ ( if ( 0 ≤ - 𝐶 , - 𝐶 , 0 ) · if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) ) ) ∈ 𝐿1 ) |
114 |
79
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( if ( 0 ≤ - 𝐶 , - 𝐶 , 0 ) · ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) − if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) ) ) = ( if ( 0 ≤ - 𝐶 , - 𝐶 , 0 ) · 𝐵 ) ) |
115 |
20 59 73
|
subdid |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( if ( 0 ≤ - 𝐶 , - 𝐶 , 0 ) · ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) − if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) ) ) = ( ( if ( 0 ≤ - 𝐶 , - 𝐶 , 0 ) · if ( 0 ≤ 𝐵 , 𝐵 , 0 ) ) − ( if ( 0 ≤ - 𝐶 , - 𝐶 , 0 ) · if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) ) ) ) |
116 |
114 115
|
eqtr3d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( if ( 0 ≤ - 𝐶 , - 𝐶 , 0 ) · 𝐵 ) = ( ( if ( 0 ≤ - 𝐶 , - 𝐶 , 0 ) · if ( 0 ≤ 𝐵 , 𝐵 , 0 ) ) − ( if ( 0 ≤ - 𝐶 , - 𝐶 , 0 ) · if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) ) ) ) |
117 |
116
|
mpteq2dva |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ ( if ( 0 ≤ - 𝐶 , - 𝐶 , 0 ) · 𝐵 ) ) = ( 𝑥 ∈ 𝐴 ↦ ( ( if ( 0 ≤ - 𝐶 , - 𝐶 , 0 ) · if ( 0 ≤ 𝐵 , 𝐵 , 0 ) ) − ( if ( 0 ≤ - 𝐶 , - 𝐶 , 0 ) · if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) ) ) ) ) |
118 |
43 117
|
eqtrd |
⊢ ( 𝜑 → ( ( 𝐴 × { if ( 0 ≤ - 𝐶 , - 𝐶 , 0 ) } ) ∘f · ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) = ( 𝑥 ∈ 𝐴 ↦ ( ( if ( 0 ≤ - 𝐶 , - 𝐶 , 0 ) · if ( 0 ≤ 𝐵 , 𝐵 , 0 ) ) − ( if ( 0 ≤ - 𝐶 , - 𝐶 , 0 ) · if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) ) ) ) ) |
119 |
118 44
|
eqeltrrd |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ ( ( if ( 0 ≤ - 𝐶 , - 𝐶 , 0 ) · if ( 0 ≤ 𝐵 , 𝐵 , 0 ) ) − ( if ( 0 ≤ - 𝐶 , - 𝐶 , 0 ) · if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) ) ) ) ∈ MblFn ) |
120 |
104 108 109 113 119
|
itgsubnc |
⊢ ( 𝜑 → ∫ 𝐴 ( ( if ( 0 ≤ - 𝐶 , - 𝐶 , 0 ) · if ( 0 ≤ 𝐵 , 𝐵 , 0 ) ) − ( if ( 0 ≤ - 𝐶 , - 𝐶 , 0 ) · if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) ) ) d 𝑥 = ( ∫ 𝐴 ( if ( 0 ≤ - 𝐶 , - 𝐶 , 0 ) · if ( 0 ≤ 𝐵 , 𝐵 , 0 ) ) d 𝑥 − ∫ 𝐴 ( if ( 0 ≤ - 𝐶 , - 𝐶 , 0 ) · if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) ) d 𝑥 ) ) |
121 |
116
|
itgeq2dv |
⊢ ( 𝜑 → ∫ 𝐴 ( if ( 0 ≤ - 𝐶 , - 𝐶 , 0 ) · 𝐵 ) d 𝑥 = ∫ 𝐴 ( ( if ( 0 ≤ - 𝐶 , - 𝐶 , 0 ) · if ( 0 ≤ 𝐵 , 𝐵 , 0 ) ) − ( if ( 0 ≤ - 𝐶 , - 𝐶 , 0 ) · if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) ) ) d 𝑥 ) |
122 |
88
|
oveq2d |
⊢ ( 𝜑 → ( if ( 0 ≤ - 𝐶 , - 𝐶 , 0 ) · ∫ 𝐴 𝐵 d 𝑥 ) = ( if ( 0 ≤ - 𝐶 , - 𝐶 , 0 ) · ( ∫ 𝐴 if ( 0 ≤ 𝐵 , 𝐵 , 0 ) d 𝑥 − ∫ 𝐴 if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) d 𝑥 ) ) ) |
123 |
19 90 91
|
subdid |
⊢ ( 𝜑 → ( if ( 0 ≤ - 𝐶 , - 𝐶 , 0 ) · ( ∫ 𝐴 if ( 0 ≤ 𝐵 , 𝐵 , 0 ) d 𝑥 − ∫ 𝐴 if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) d 𝑥 ) ) = ( ( if ( 0 ≤ - 𝐶 , - 𝐶 , 0 ) · ∫ 𝐴 if ( 0 ≤ 𝐵 , 𝐵 , 0 ) d 𝑥 ) − ( if ( 0 ≤ - 𝐶 , - 𝐶 , 0 ) · ∫ 𝐴 if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) d 𝑥 ) ) ) |
124 |
|
max1 |
⊢ ( ( 0 ∈ ℝ ∧ - 𝐶 ∈ ℝ ) → 0 ≤ if ( 0 ≤ - 𝐶 , - 𝐶 , 0 ) ) |
125 |
11 16 124
|
sylancr |
⊢ ( 𝜑 → 0 ≤ if ( 0 ≤ - 𝐶 , - 𝐶 , 0 ) ) |
126 |
19 52 55 107 18 52 125 96
|
itgmulc2nclem1 |
⊢ ( 𝜑 → ( if ( 0 ≤ - 𝐶 , - 𝐶 , 0 ) · ∫ 𝐴 if ( 0 ≤ 𝐵 , 𝐵 , 0 ) d 𝑥 ) = ∫ 𝐴 ( if ( 0 ≤ - 𝐶 , - 𝐶 , 0 ) · if ( 0 ≤ 𝐵 , 𝐵 , 0 ) ) d 𝑥 ) |
127 |
19 67 68 112 18 67 125 99
|
itgmulc2nclem1 |
⊢ ( 𝜑 → ( if ( 0 ≤ - 𝐶 , - 𝐶 , 0 ) · ∫ 𝐴 if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) d 𝑥 ) = ∫ 𝐴 ( if ( 0 ≤ - 𝐶 , - 𝐶 , 0 ) · if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) ) d 𝑥 ) |
128 |
126 127
|
oveq12d |
⊢ ( 𝜑 → ( ( if ( 0 ≤ - 𝐶 , - 𝐶 , 0 ) · ∫ 𝐴 if ( 0 ≤ 𝐵 , 𝐵 , 0 ) d 𝑥 ) − ( if ( 0 ≤ - 𝐶 , - 𝐶 , 0 ) · ∫ 𝐴 if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) d 𝑥 ) ) = ( ∫ 𝐴 ( if ( 0 ≤ - 𝐶 , - 𝐶 , 0 ) · if ( 0 ≤ 𝐵 , 𝐵 , 0 ) ) d 𝑥 − ∫ 𝐴 ( if ( 0 ≤ - 𝐶 , - 𝐶 , 0 ) · if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) ) d 𝑥 ) ) |
129 |
122 123 128
|
3eqtrd |
⊢ ( 𝜑 → ( if ( 0 ≤ - 𝐶 , - 𝐶 , 0 ) · ∫ 𝐴 𝐵 d 𝑥 ) = ( ∫ 𝐴 ( if ( 0 ≤ - 𝐶 , - 𝐶 , 0 ) · if ( 0 ≤ 𝐵 , 𝐵 , 0 ) ) d 𝑥 − ∫ 𝐴 ( if ( 0 ≤ - 𝐶 , - 𝐶 , 0 ) · if ( 0 ≤ - 𝐵 , - 𝐵 , 0 ) ) d 𝑥 ) ) |
130 |
120 121 129
|
3eqtr4d |
⊢ ( 𝜑 → ∫ 𝐴 ( if ( 0 ≤ - 𝐶 , - 𝐶 , 0 ) · 𝐵 ) d 𝑥 = ( if ( 0 ≤ - 𝐶 , - 𝐶 , 0 ) · ∫ 𝐴 𝐵 d 𝑥 ) ) |
131 |
103 130
|
oveq12d |
⊢ ( 𝜑 → ( ∫ 𝐴 ( if ( 0 ≤ 𝐶 , 𝐶 , 0 ) · 𝐵 ) d 𝑥 − ∫ 𝐴 ( if ( 0 ≤ - 𝐶 , - 𝐶 , 0 ) · 𝐵 ) d 𝑥 ) = ( ( if ( 0 ≤ 𝐶 , 𝐶 , 0 ) · ∫ 𝐴 𝐵 d 𝑥 ) − ( if ( 0 ≤ - 𝐶 , - 𝐶 , 0 ) · ∫ 𝐴 𝐵 d 𝑥 ) ) ) |
132 |
6 3
|
itgcl |
⊢ ( 𝜑 → ∫ 𝐴 𝐵 d 𝑥 ∈ ℂ ) |
133 |
14 19 132
|
subdird |
⊢ ( 𝜑 → ( ( if ( 0 ≤ 𝐶 , 𝐶 , 0 ) − if ( 0 ≤ - 𝐶 , - 𝐶 , 0 ) ) · ∫ 𝐴 𝐵 d 𝑥 ) = ( ( if ( 0 ≤ 𝐶 , 𝐶 , 0 ) · ∫ 𝐴 𝐵 d 𝑥 ) − ( if ( 0 ≤ - 𝐶 , - 𝐶 , 0 ) · ∫ 𝐴 𝐵 d 𝑥 ) ) ) |
134 |
8
|
oveq1d |
⊢ ( 𝜑 → ( ( if ( 0 ≤ 𝐶 , 𝐶 , 0 ) − if ( 0 ≤ - 𝐶 , - 𝐶 , 0 ) ) · ∫ 𝐴 𝐵 d 𝑥 ) = ( 𝐶 · ∫ 𝐴 𝐵 d 𝑥 ) ) |
135 |
131 133 134
|
3eqtr2d |
⊢ ( 𝜑 → ( ∫ 𝐴 ( if ( 0 ≤ 𝐶 , 𝐶 , 0 ) · 𝐵 ) d 𝑥 − ∫ 𝐴 ( if ( 0 ≤ - 𝐶 , - 𝐶 , 0 ) · 𝐵 ) d 𝑥 ) = ( 𝐶 · ∫ 𝐴 𝐵 d 𝑥 ) ) |
136 |
24 49 135
|
3eqtrrd |
⊢ ( 𝜑 → ( 𝐶 · ∫ 𝐴 𝐵 d 𝑥 ) = ∫ 𝐴 ( 𝐶 · 𝐵 ) d 𝑥 ) |