| Step | Hyp | Ref | Expression | 
						
							| 1 |  | itgmulc2nc.1 | ⊢ ( 𝜑  →  𝐶  ∈  ℂ ) | 
						
							| 2 |  | itgmulc2nc.2 | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  𝐵  ∈  𝑉 ) | 
						
							| 3 |  | itgmulc2nc.3 | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝐴  ↦  𝐵 )  ∈  𝐿1 ) | 
						
							| 4 |  | itgmulc2nc.m | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝐴  ↦  ( 𝐶  ·  𝐵 ) )  ∈  MblFn ) | 
						
							| 5 |  | itgmulc2nc.4 | ⊢ ( 𝜑  →  𝐶  ∈  ℝ ) | 
						
							| 6 |  | itgmulc2nc.5 | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  𝐵  ∈  ℝ ) | 
						
							| 7 |  | max0sub | ⊢ ( 𝐶  ∈  ℝ  →  ( if ( 0  ≤  𝐶 ,  𝐶 ,  0 )  −  if ( 0  ≤  - 𝐶 ,  - 𝐶 ,  0 ) )  =  𝐶 ) | 
						
							| 8 | 5 7 | syl | ⊢ ( 𝜑  →  ( if ( 0  ≤  𝐶 ,  𝐶 ,  0 )  −  if ( 0  ≤  - 𝐶 ,  - 𝐶 ,  0 ) )  =  𝐶 ) | 
						
							| 9 | 8 | oveq1d | ⊢ ( 𝜑  →  ( ( if ( 0  ≤  𝐶 ,  𝐶 ,  0 )  −  if ( 0  ≤  - 𝐶 ,  - 𝐶 ,  0 ) )  ·  𝐵 )  =  ( 𝐶  ·  𝐵 ) ) | 
						
							| 10 | 9 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  ( ( if ( 0  ≤  𝐶 ,  𝐶 ,  0 )  −  if ( 0  ≤  - 𝐶 ,  - 𝐶 ,  0 ) )  ·  𝐵 )  =  ( 𝐶  ·  𝐵 ) ) | 
						
							| 11 |  | 0re | ⊢ 0  ∈  ℝ | 
						
							| 12 |  | ifcl | ⊢ ( ( 𝐶  ∈  ℝ  ∧  0  ∈  ℝ )  →  if ( 0  ≤  𝐶 ,  𝐶 ,  0 )  ∈  ℝ ) | 
						
							| 13 | 5 11 12 | sylancl | ⊢ ( 𝜑  →  if ( 0  ≤  𝐶 ,  𝐶 ,  0 )  ∈  ℝ ) | 
						
							| 14 | 13 | recnd | ⊢ ( 𝜑  →  if ( 0  ≤  𝐶 ,  𝐶 ,  0 )  ∈  ℂ ) | 
						
							| 15 | 14 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  if ( 0  ≤  𝐶 ,  𝐶 ,  0 )  ∈  ℂ ) | 
						
							| 16 | 5 | renegcld | ⊢ ( 𝜑  →  - 𝐶  ∈  ℝ ) | 
						
							| 17 |  | ifcl | ⊢ ( ( - 𝐶  ∈  ℝ  ∧  0  ∈  ℝ )  →  if ( 0  ≤  - 𝐶 ,  - 𝐶 ,  0 )  ∈  ℝ ) | 
						
							| 18 | 16 11 17 | sylancl | ⊢ ( 𝜑  →  if ( 0  ≤  - 𝐶 ,  - 𝐶 ,  0 )  ∈  ℝ ) | 
						
							| 19 | 18 | recnd | ⊢ ( 𝜑  →  if ( 0  ≤  - 𝐶 ,  - 𝐶 ,  0 )  ∈  ℂ ) | 
						
							| 20 | 19 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  if ( 0  ≤  - 𝐶 ,  - 𝐶 ,  0 )  ∈  ℂ ) | 
						
							| 21 | 6 | recnd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  𝐵  ∈  ℂ ) | 
						
							| 22 | 15 20 21 | subdird | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  ( ( if ( 0  ≤  𝐶 ,  𝐶 ,  0 )  −  if ( 0  ≤  - 𝐶 ,  - 𝐶 ,  0 ) )  ·  𝐵 )  =  ( ( if ( 0  ≤  𝐶 ,  𝐶 ,  0 )  ·  𝐵 )  −  ( if ( 0  ≤  - 𝐶 ,  - 𝐶 ,  0 )  ·  𝐵 ) ) ) | 
						
							| 23 | 10 22 | eqtr3d | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  ( 𝐶  ·  𝐵 )  =  ( ( if ( 0  ≤  𝐶 ,  𝐶 ,  0 )  ·  𝐵 )  −  ( if ( 0  ≤  - 𝐶 ,  - 𝐶 ,  0 )  ·  𝐵 ) ) ) | 
						
							| 24 | 23 | itgeq2dv | ⊢ ( 𝜑  →  ∫ 𝐴 ( 𝐶  ·  𝐵 )  d 𝑥  =  ∫ 𝐴 ( ( if ( 0  ≤  𝐶 ,  𝐶 ,  0 )  ·  𝐵 )  −  ( if ( 0  ≤  - 𝐶 ,  - 𝐶 ,  0 )  ·  𝐵 ) )  d 𝑥 ) | 
						
							| 25 |  | ovexd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  ( if ( 0  ≤  𝐶 ,  𝐶 ,  0 )  ·  𝐵 )  ∈  V ) | 
						
							| 26 |  | ovexd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  ( 𝐶  ·  𝐵 )  ∈  V ) | 
						
							| 27 | 4 26 | mbfdm2 | ⊢ ( 𝜑  →  𝐴  ∈  dom  vol ) | 
						
							| 28 | 13 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  if ( 0  ≤  𝐶 ,  𝐶 ,  0 )  ∈  ℝ ) | 
						
							| 29 |  | fconstmpt | ⊢ ( 𝐴  ×  { if ( 0  ≤  𝐶 ,  𝐶 ,  0 ) } )  =  ( 𝑥  ∈  𝐴  ↦  if ( 0  ≤  𝐶 ,  𝐶 ,  0 ) ) | 
						
							| 30 | 29 | a1i | ⊢ ( 𝜑  →  ( 𝐴  ×  { if ( 0  ≤  𝐶 ,  𝐶 ,  0 ) } )  =  ( 𝑥  ∈  𝐴  ↦  if ( 0  ≤  𝐶 ,  𝐶 ,  0 ) ) ) | 
						
							| 31 |  | eqidd | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝐴  ↦  𝐵 )  =  ( 𝑥  ∈  𝐴  ↦  𝐵 ) ) | 
						
							| 32 | 27 28 6 30 31 | offval2 | ⊢ ( 𝜑  →  ( ( 𝐴  ×  { if ( 0  ≤  𝐶 ,  𝐶 ,  0 ) } )  ∘f   ·  ( 𝑥  ∈  𝐴  ↦  𝐵 ) )  =  ( 𝑥  ∈  𝐴  ↦  ( if ( 0  ≤  𝐶 ,  𝐶 ,  0 )  ·  𝐵 ) ) ) | 
						
							| 33 |  | iblmbf | ⊢ ( ( 𝑥  ∈  𝐴  ↦  𝐵 )  ∈  𝐿1  →  ( 𝑥  ∈  𝐴  ↦  𝐵 )  ∈  MblFn ) | 
						
							| 34 | 3 33 | syl | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝐴  ↦  𝐵 )  ∈  MblFn ) | 
						
							| 35 | 21 | fmpttd | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝐴  ↦  𝐵 ) : 𝐴 ⟶ ℂ ) | 
						
							| 36 | 34 13 35 | mbfmulc2re | ⊢ ( 𝜑  →  ( ( 𝐴  ×  { if ( 0  ≤  𝐶 ,  𝐶 ,  0 ) } )  ∘f   ·  ( 𝑥  ∈  𝐴  ↦  𝐵 ) )  ∈  MblFn ) | 
						
							| 37 | 32 36 | eqeltrrd | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝐴  ↦  ( if ( 0  ≤  𝐶 ,  𝐶 ,  0 )  ·  𝐵 ) )  ∈  MblFn ) | 
						
							| 38 | 14 6 3 37 | iblmulc2nc | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝐴  ↦  ( if ( 0  ≤  𝐶 ,  𝐶 ,  0 )  ·  𝐵 ) )  ∈  𝐿1 ) | 
						
							| 39 |  | ovexd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  ( if ( 0  ≤  - 𝐶 ,  - 𝐶 ,  0 )  ·  𝐵 )  ∈  V ) | 
						
							| 40 | 18 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  if ( 0  ≤  - 𝐶 ,  - 𝐶 ,  0 )  ∈  ℝ ) | 
						
							| 41 |  | fconstmpt | ⊢ ( 𝐴  ×  { if ( 0  ≤  - 𝐶 ,  - 𝐶 ,  0 ) } )  =  ( 𝑥  ∈  𝐴  ↦  if ( 0  ≤  - 𝐶 ,  - 𝐶 ,  0 ) ) | 
						
							| 42 | 41 | a1i | ⊢ ( 𝜑  →  ( 𝐴  ×  { if ( 0  ≤  - 𝐶 ,  - 𝐶 ,  0 ) } )  =  ( 𝑥  ∈  𝐴  ↦  if ( 0  ≤  - 𝐶 ,  - 𝐶 ,  0 ) ) ) | 
						
							| 43 | 27 40 6 42 31 | offval2 | ⊢ ( 𝜑  →  ( ( 𝐴  ×  { if ( 0  ≤  - 𝐶 ,  - 𝐶 ,  0 ) } )  ∘f   ·  ( 𝑥  ∈  𝐴  ↦  𝐵 ) )  =  ( 𝑥  ∈  𝐴  ↦  ( if ( 0  ≤  - 𝐶 ,  - 𝐶 ,  0 )  ·  𝐵 ) ) ) | 
						
							| 44 | 34 18 35 | mbfmulc2re | ⊢ ( 𝜑  →  ( ( 𝐴  ×  { if ( 0  ≤  - 𝐶 ,  - 𝐶 ,  0 ) } )  ∘f   ·  ( 𝑥  ∈  𝐴  ↦  𝐵 ) )  ∈  MblFn ) | 
						
							| 45 | 43 44 | eqeltrrd | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝐴  ↦  ( if ( 0  ≤  - 𝐶 ,  - 𝐶 ,  0 )  ·  𝐵 ) )  ∈  MblFn ) | 
						
							| 46 | 19 6 3 45 | iblmulc2nc | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝐴  ↦  ( if ( 0  ≤  - 𝐶 ,  - 𝐶 ,  0 )  ·  𝐵 ) )  ∈  𝐿1 ) | 
						
							| 47 | 23 | mpteq2dva | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝐴  ↦  ( 𝐶  ·  𝐵 ) )  =  ( 𝑥  ∈  𝐴  ↦  ( ( if ( 0  ≤  𝐶 ,  𝐶 ,  0 )  ·  𝐵 )  −  ( if ( 0  ≤  - 𝐶 ,  - 𝐶 ,  0 )  ·  𝐵 ) ) ) ) | 
						
							| 48 | 47 4 | eqeltrrd | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝐴  ↦  ( ( if ( 0  ≤  𝐶 ,  𝐶 ,  0 )  ·  𝐵 )  −  ( if ( 0  ≤  - 𝐶 ,  - 𝐶 ,  0 )  ·  𝐵 ) ) )  ∈  MblFn ) | 
						
							| 49 | 25 38 39 46 48 | itgsubnc | ⊢ ( 𝜑  →  ∫ 𝐴 ( ( if ( 0  ≤  𝐶 ,  𝐶 ,  0 )  ·  𝐵 )  −  ( if ( 0  ≤  - 𝐶 ,  - 𝐶 ,  0 )  ·  𝐵 ) )  d 𝑥  =  ( ∫ 𝐴 ( if ( 0  ≤  𝐶 ,  𝐶 ,  0 )  ·  𝐵 )  d 𝑥  −  ∫ 𝐴 ( if ( 0  ≤  - 𝐶 ,  - 𝐶 ,  0 )  ·  𝐵 )  d 𝑥 ) ) | 
						
							| 50 |  | ovexd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  ( if ( 0  ≤  𝐶 ,  𝐶 ,  0 )  ·  if ( 0  ≤  𝐵 ,  𝐵 ,  0 ) )  ∈  V ) | 
						
							| 51 |  | ifcl | ⊢ ( ( 𝐵  ∈  ℝ  ∧  0  ∈  ℝ )  →  if ( 0  ≤  𝐵 ,  𝐵 ,  0 )  ∈  ℝ ) | 
						
							| 52 | 6 11 51 | sylancl | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  if ( 0  ≤  𝐵 ,  𝐵 ,  0 )  ∈  ℝ ) | 
						
							| 53 | 6 | iblre | ⊢ ( 𝜑  →  ( ( 𝑥  ∈  𝐴  ↦  𝐵 )  ∈  𝐿1  ↔  ( ( 𝑥  ∈  𝐴  ↦  if ( 0  ≤  𝐵 ,  𝐵 ,  0 ) )  ∈  𝐿1  ∧  ( 𝑥  ∈  𝐴  ↦  if ( 0  ≤  - 𝐵 ,  - 𝐵 ,  0 ) )  ∈  𝐿1 ) ) ) | 
						
							| 54 | 3 53 | mpbid | ⊢ ( 𝜑  →  ( ( 𝑥  ∈  𝐴  ↦  if ( 0  ≤  𝐵 ,  𝐵 ,  0 ) )  ∈  𝐿1  ∧  ( 𝑥  ∈  𝐴  ↦  if ( 0  ≤  - 𝐵 ,  - 𝐵 ,  0 ) )  ∈  𝐿1 ) ) | 
						
							| 55 | 54 | simpld | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝐴  ↦  if ( 0  ≤  𝐵 ,  𝐵 ,  0 ) )  ∈  𝐿1 ) | 
						
							| 56 |  | eqidd | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝐴  ↦  if ( 0  ≤  𝐵 ,  𝐵 ,  0 ) )  =  ( 𝑥  ∈  𝐴  ↦  if ( 0  ≤  𝐵 ,  𝐵 ,  0 ) ) ) | 
						
							| 57 | 27 28 52 30 56 | offval2 | ⊢ ( 𝜑  →  ( ( 𝐴  ×  { if ( 0  ≤  𝐶 ,  𝐶 ,  0 ) } )  ∘f   ·  ( 𝑥  ∈  𝐴  ↦  if ( 0  ≤  𝐵 ,  𝐵 ,  0 ) ) )  =  ( 𝑥  ∈  𝐴  ↦  ( if ( 0  ≤  𝐶 ,  𝐶 ,  0 )  ·  if ( 0  ≤  𝐵 ,  𝐵 ,  0 ) ) ) ) | 
						
							| 58 | 6 34 | mbfpos | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝐴  ↦  if ( 0  ≤  𝐵 ,  𝐵 ,  0 ) )  ∈  MblFn ) | 
						
							| 59 | 52 | recnd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  if ( 0  ≤  𝐵 ,  𝐵 ,  0 )  ∈  ℂ ) | 
						
							| 60 | 59 | fmpttd | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝐴  ↦  if ( 0  ≤  𝐵 ,  𝐵 ,  0 ) ) : 𝐴 ⟶ ℂ ) | 
						
							| 61 | 58 13 60 | mbfmulc2re | ⊢ ( 𝜑  →  ( ( 𝐴  ×  { if ( 0  ≤  𝐶 ,  𝐶 ,  0 ) } )  ∘f   ·  ( 𝑥  ∈  𝐴  ↦  if ( 0  ≤  𝐵 ,  𝐵 ,  0 ) ) )  ∈  MblFn ) | 
						
							| 62 | 57 61 | eqeltrrd | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝐴  ↦  ( if ( 0  ≤  𝐶 ,  𝐶 ,  0 )  ·  if ( 0  ≤  𝐵 ,  𝐵 ,  0 ) ) )  ∈  MblFn ) | 
						
							| 63 | 14 52 55 62 | iblmulc2nc | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝐴  ↦  ( if ( 0  ≤  𝐶 ,  𝐶 ,  0 )  ·  if ( 0  ≤  𝐵 ,  𝐵 ,  0 ) ) )  ∈  𝐿1 ) | 
						
							| 64 |  | ovexd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  ( if ( 0  ≤  𝐶 ,  𝐶 ,  0 )  ·  if ( 0  ≤  - 𝐵 ,  - 𝐵 ,  0 ) )  ∈  V ) | 
						
							| 65 | 6 | renegcld | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  - 𝐵  ∈  ℝ ) | 
						
							| 66 |  | ifcl | ⊢ ( ( - 𝐵  ∈  ℝ  ∧  0  ∈  ℝ )  →  if ( 0  ≤  - 𝐵 ,  - 𝐵 ,  0 )  ∈  ℝ ) | 
						
							| 67 | 65 11 66 | sylancl | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  if ( 0  ≤  - 𝐵 ,  - 𝐵 ,  0 )  ∈  ℝ ) | 
						
							| 68 | 54 | simprd | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝐴  ↦  if ( 0  ≤  - 𝐵 ,  - 𝐵 ,  0 ) )  ∈  𝐿1 ) | 
						
							| 69 |  | eqidd | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝐴  ↦  if ( 0  ≤  - 𝐵 ,  - 𝐵 ,  0 ) )  =  ( 𝑥  ∈  𝐴  ↦  if ( 0  ≤  - 𝐵 ,  - 𝐵 ,  0 ) ) ) | 
						
							| 70 | 27 28 67 30 69 | offval2 | ⊢ ( 𝜑  →  ( ( 𝐴  ×  { if ( 0  ≤  𝐶 ,  𝐶 ,  0 ) } )  ∘f   ·  ( 𝑥  ∈  𝐴  ↦  if ( 0  ≤  - 𝐵 ,  - 𝐵 ,  0 ) ) )  =  ( 𝑥  ∈  𝐴  ↦  ( if ( 0  ≤  𝐶 ,  𝐶 ,  0 )  ·  if ( 0  ≤  - 𝐵 ,  - 𝐵 ,  0 ) ) ) ) | 
						
							| 71 | 6 34 | mbfneg | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝐴  ↦  - 𝐵 )  ∈  MblFn ) | 
						
							| 72 | 65 71 | mbfpos | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝐴  ↦  if ( 0  ≤  - 𝐵 ,  - 𝐵 ,  0 ) )  ∈  MblFn ) | 
						
							| 73 | 67 | recnd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  if ( 0  ≤  - 𝐵 ,  - 𝐵 ,  0 )  ∈  ℂ ) | 
						
							| 74 | 73 | fmpttd | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝐴  ↦  if ( 0  ≤  - 𝐵 ,  - 𝐵 ,  0 ) ) : 𝐴 ⟶ ℂ ) | 
						
							| 75 | 72 13 74 | mbfmulc2re | ⊢ ( 𝜑  →  ( ( 𝐴  ×  { if ( 0  ≤  𝐶 ,  𝐶 ,  0 ) } )  ∘f   ·  ( 𝑥  ∈  𝐴  ↦  if ( 0  ≤  - 𝐵 ,  - 𝐵 ,  0 ) ) )  ∈  MblFn ) | 
						
							| 76 | 70 75 | eqeltrrd | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝐴  ↦  ( if ( 0  ≤  𝐶 ,  𝐶 ,  0 )  ·  if ( 0  ≤  - 𝐵 ,  - 𝐵 ,  0 ) ) )  ∈  MblFn ) | 
						
							| 77 | 14 67 68 76 | iblmulc2nc | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝐴  ↦  ( if ( 0  ≤  𝐶 ,  𝐶 ,  0 )  ·  if ( 0  ≤  - 𝐵 ,  - 𝐵 ,  0 ) ) )  ∈  𝐿1 ) | 
						
							| 78 |  | max0sub | ⊢ ( 𝐵  ∈  ℝ  →  ( if ( 0  ≤  𝐵 ,  𝐵 ,  0 )  −  if ( 0  ≤  - 𝐵 ,  - 𝐵 ,  0 ) )  =  𝐵 ) | 
						
							| 79 | 6 78 | syl | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  ( if ( 0  ≤  𝐵 ,  𝐵 ,  0 )  −  if ( 0  ≤  - 𝐵 ,  - 𝐵 ,  0 ) )  =  𝐵 ) | 
						
							| 80 | 79 | oveq2d | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  ( if ( 0  ≤  𝐶 ,  𝐶 ,  0 )  ·  ( if ( 0  ≤  𝐵 ,  𝐵 ,  0 )  −  if ( 0  ≤  - 𝐵 ,  - 𝐵 ,  0 ) ) )  =  ( if ( 0  ≤  𝐶 ,  𝐶 ,  0 )  ·  𝐵 ) ) | 
						
							| 81 | 15 59 73 | subdid | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  ( if ( 0  ≤  𝐶 ,  𝐶 ,  0 )  ·  ( if ( 0  ≤  𝐵 ,  𝐵 ,  0 )  −  if ( 0  ≤  - 𝐵 ,  - 𝐵 ,  0 ) ) )  =  ( ( if ( 0  ≤  𝐶 ,  𝐶 ,  0 )  ·  if ( 0  ≤  𝐵 ,  𝐵 ,  0 ) )  −  ( if ( 0  ≤  𝐶 ,  𝐶 ,  0 )  ·  if ( 0  ≤  - 𝐵 ,  - 𝐵 ,  0 ) ) ) ) | 
						
							| 82 | 80 81 | eqtr3d | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  ( if ( 0  ≤  𝐶 ,  𝐶 ,  0 )  ·  𝐵 )  =  ( ( if ( 0  ≤  𝐶 ,  𝐶 ,  0 )  ·  if ( 0  ≤  𝐵 ,  𝐵 ,  0 ) )  −  ( if ( 0  ≤  𝐶 ,  𝐶 ,  0 )  ·  if ( 0  ≤  - 𝐵 ,  - 𝐵 ,  0 ) ) ) ) | 
						
							| 83 | 82 | mpteq2dva | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝐴  ↦  ( if ( 0  ≤  𝐶 ,  𝐶 ,  0 )  ·  𝐵 ) )  =  ( 𝑥  ∈  𝐴  ↦  ( ( if ( 0  ≤  𝐶 ,  𝐶 ,  0 )  ·  if ( 0  ≤  𝐵 ,  𝐵 ,  0 ) )  −  ( if ( 0  ≤  𝐶 ,  𝐶 ,  0 )  ·  if ( 0  ≤  - 𝐵 ,  - 𝐵 ,  0 ) ) ) ) ) | 
						
							| 84 | 32 83 | eqtrd | ⊢ ( 𝜑  →  ( ( 𝐴  ×  { if ( 0  ≤  𝐶 ,  𝐶 ,  0 ) } )  ∘f   ·  ( 𝑥  ∈  𝐴  ↦  𝐵 ) )  =  ( 𝑥  ∈  𝐴  ↦  ( ( if ( 0  ≤  𝐶 ,  𝐶 ,  0 )  ·  if ( 0  ≤  𝐵 ,  𝐵 ,  0 ) )  −  ( if ( 0  ≤  𝐶 ,  𝐶 ,  0 )  ·  if ( 0  ≤  - 𝐵 ,  - 𝐵 ,  0 ) ) ) ) ) | 
						
							| 85 | 84 36 | eqeltrrd | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝐴  ↦  ( ( if ( 0  ≤  𝐶 ,  𝐶 ,  0 )  ·  if ( 0  ≤  𝐵 ,  𝐵 ,  0 ) )  −  ( if ( 0  ≤  𝐶 ,  𝐶 ,  0 )  ·  if ( 0  ≤  - 𝐵 ,  - 𝐵 ,  0 ) ) ) )  ∈  MblFn ) | 
						
							| 86 | 50 63 64 77 85 | itgsubnc | ⊢ ( 𝜑  →  ∫ 𝐴 ( ( if ( 0  ≤  𝐶 ,  𝐶 ,  0 )  ·  if ( 0  ≤  𝐵 ,  𝐵 ,  0 ) )  −  ( if ( 0  ≤  𝐶 ,  𝐶 ,  0 )  ·  if ( 0  ≤  - 𝐵 ,  - 𝐵 ,  0 ) ) )  d 𝑥  =  ( ∫ 𝐴 ( if ( 0  ≤  𝐶 ,  𝐶 ,  0 )  ·  if ( 0  ≤  𝐵 ,  𝐵 ,  0 ) )  d 𝑥  −  ∫ 𝐴 ( if ( 0  ≤  𝐶 ,  𝐶 ,  0 )  ·  if ( 0  ≤  - 𝐵 ,  - 𝐵 ,  0 ) )  d 𝑥 ) ) | 
						
							| 87 | 82 | itgeq2dv | ⊢ ( 𝜑  →  ∫ 𝐴 ( if ( 0  ≤  𝐶 ,  𝐶 ,  0 )  ·  𝐵 )  d 𝑥  =  ∫ 𝐴 ( ( if ( 0  ≤  𝐶 ,  𝐶 ,  0 )  ·  if ( 0  ≤  𝐵 ,  𝐵 ,  0 ) )  −  ( if ( 0  ≤  𝐶 ,  𝐶 ,  0 )  ·  if ( 0  ≤  - 𝐵 ,  - 𝐵 ,  0 ) ) )  d 𝑥 ) | 
						
							| 88 | 6 3 | itgreval | ⊢ ( 𝜑  →  ∫ 𝐴 𝐵  d 𝑥  =  ( ∫ 𝐴 if ( 0  ≤  𝐵 ,  𝐵 ,  0 )  d 𝑥  −  ∫ 𝐴 if ( 0  ≤  - 𝐵 ,  - 𝐵 ,  0 )  d 𝑥 ) ) | 
						
							| 89 | 88 | oveq2d | ⊢ ( 𝜑  →  ( if ( 0  ≤  𝐶 ,  𝐶 ,  0 )  ·  ∫ 𝐴 𝐵  d 𝑥 )  =  ( if ( 0  ≤  𝐶 ,  𝐶 ,  0 )  ·  ( ∫ 𝐴 if ( 0  ≤  𝐵 ,  𝐵 ,  0 )  d 𝑥  −  ∫ 𝐴 if ( 0  ≤  - 𝐵 ,  - 𝐵 ,  0 )  d 𝑥 ) ) ) | 
						
							| 90 | 52 55 | itgcl | ⊢ ( 𝜑  →  ∫ 𝐴 if ( 0  ≤  𝐵 ,  𝐵 ,  0 )  d 𝑥  ∈  ℂ ) | 
						
							| 91 | 67 68 | itgcl | ⊢ ( 𝜑  →  ∫ 𝐴 if ( 0  ≤  - 𝐵 ,  - 𝐵 ,  0 )  d 𝑥  ∈  ℂ ) | 
						
							| 92 | 14 90 91 | subdid | ⊢ ( 𝜑  →  ( if ( 0  ≤  𝐶 ,  𝐶 ,  0 )  ·  ( ∫ 𝐴 if ( 0  ≤  𝐵 ,  𝐵 ,  0 )  d 𝑥  −  ∫ 𝐴 if ( 0  ≤  - 𝐵 ,  - 𝐵 ,  0 )  d 𝑥 ) )  =  ( ( if ( 0  ≤  𝐶 ,  𝐶 ,  0 )  ·  ∫ 𝐴 if ( 0  ≤  𝐵 ,  𝐵 ,  0 )  d 𝑥 )  −  ( if ( 0  ≤  𝐶 ,  𝐶 ,  0 )  ·  ∫ 𝐴 if ( 0  ≤  - 𝐵 ,  - 𝐵 ,  0 )  d 𝑥 ) ) ) | 
						
							| 93 |  | max1 | ⊢ ( ( 0  ∈  ℝ  ∧  𝐶  ∈  ℝ )  →  0  ≤  if ( 0  ≤  𝐶 ,  𝐶 ,  0 ) ) | 
						
							| 94 | 11 5 93 | sylancr | ⊢ ( 𝜑  →  0  ≤  if ( 0  ≤  𝐶 ,  𝐶 ,  0 ) ) | 
						
							| 95 |  | max1 | ⊢ ( ( 0  ∈  ℝ  ∧  𝐵  ∈  ℝ )  →  0  ≤  if ( 0  ≤  𝐵 ,  𝐵 ,  0 ) ) | 
						
							| 96 | 11 6 95 | sylancr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  0  ≤  if ( 0  ≤  𝐵 ,  𝐵 ,  0 ) ) | 
						
							| 97 | 14 52 55 62 13 52 94 96 | itgmulc2nclem1 | ⊢ ( 𝜑  →  ( if ( 0  ≤  𝐶 ,  𝐶 ,  0 )  ·  ∫ 𝐴 if ( 0  ≤  𝐵 ,  𝐵 ,  0 )  d 𝑥 )  =  ∫ 𝐴 ( if ( 0  ≤  𝐶 ,  𝐶 ,  0 )  ·  if ( 0  ≤  𝐵 ,  𝐵 ,  0 ) )  d 𝑥 ) | 
						
							| 98 |  | max1 | ⊢ ( ( 0  ∈  ℝ  ∧  - 𝐵  ∈  ℝ )  →  0  ≤  if ( 0  ≤  - 𝐵 ,  - 𝐵 ,  0 ) ) | 
						
							| 99 | 11 65 98 | sylancr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  0  ≤  if ( 0  ≤  - 𝐵 ,  - 𝐵 ,  0 ) ) | 
						
							| 100 | 14 67 68 76 13 67 94 99 | itgmulc2nclem1 | ⊢ ( 𝜑  →  ( if ( 0  ≤  𝐶 ,  𝐶 ,  0 )  ·  ∫ 𝐴 if ( 0  ≤  - 𝐵 ,  - 𝐵 ,  0 )  d 𝑥 )  =  ∫ 𝐴 ( if ( 0  ≤  𝐶 ,  𝐶 ,  0 )  ·  if ( 0  ≤  - 𝐵 ,  - 𝐵 ,  0 ) )  d 𝑥 ) | 
						
							| 101 | 97 100 | oveq12d | ⊢ ( 𝜑  →  ( ( if ( 0  ≤  𝐶 ,  𝐶 ,  0 )  ·  ∫ 𝐴 if ( 0  ≤  𝐵 ,  𝐵 ,  0 )  d 𝑥 )  −  ( if ( 0  ≤  𝐶 ,  𝐶 ,  0 )  ·  ∫ 𝐴 if ( 0  ≤  - 𝐵 ,  - 𝐵 ,  0 )  d 𝑥 ) )  =  ( ∫ 𝐴 ( if ( 0  ≤  𝐶 ,  𝐶 ,  0 )  ·  if ( 0  ≤  𝐵 ,  𝐵 ,  0 ) )  d 𝑥  −  ∫ 𝐴 ( if ( 0  ≤  𝐶 ,  𝐶 ,  0 )  ·  if ( 0  ≤  - 𝐵 ,  - 𝐵 ,  0 ) )  d 𝑥 ) ) | 
						
							| 102 | 89 92 101 | 3eqtrd | ⊢ ( 𝜑  →  ( if ( 0  ≤  𝐶 ,  𝐶 ,  0 )  ·  ∫ 𝐴 𝐵  d 𝑥 )  =  ( ∫ 𝐴 ( if ( 0  ≤  𝐶 ,  𝐶 ,  0 )  ·  if ( 0  ≤  𝐵 ,  𝐵 ,  0 ) )  d 𝑥  −  ∫ 𝐴 ( if ( 0  ≤  𝐶 ,  𝐶 ,  0 )  ·  if ( 0  ≤  - 𝐵 ,  - 𝐵 ,  0 ) )  d 𝑥 ) ) | 
						
							| 103 | 86 87 102 | 3eqtr4d | ⊢ ( 𝜑  →  ∫ 𝐴 ( if ( 0  ≤  𝐶 ,  𝐶 ,  0 )  ·  𝐵 )  d 𝑥  =  ( if ( 0  ≤  𝐶 ,  𝐶 ,  0 )  ·  ∫ 𝐴 𝐵  d 𝑥 ) ) | 
						
							| 104 |  | ovexd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  ( if ( 0  ≤  - 𝐶 ,  - 𝐶 ,  0 )  ·  if ( 0  ≤  𝐵 ,  𝐵 ,  0 ) )  ∈  V ) | 
						
							| 105 | 27 40 52 42 56 | offval2 | ⊢ ( 𝜑  →  ( ( 𝐴  ×  { if ( 0  ≤  - 𝐶 ,  - 𝐶 ,  0 ) } )  ∘f   ·  ( 𝑥  ∈  𝐴  ↦  if ( 0  ≤  𝐵 ,  𝐵 ,  0 ) ) )  =  ( 𝑥  ∈  𝐴  ↦  ( if ( 0  ≤  - 𝐶 ,  - 𝐶 ,  0 )  ·  if ( 0  ≤  𝐵 ,  𝐵 ,  0 ) ) ) ) | 
						
							| 106 | 58 18 60 | mbfmulc2re | ⊢ ( 𝜑  →  ( ( 𝐴  ×  { if ( 0  ≤  - 𝐶 ,  - 𝐶 ,  0 ) } )  ∘f   ·  ( 𝑥  ∈  𝐴  ↦  if ( 0  ≤  𝐵 ,  𝐵 ,  0 ) ) )  ∈  MblFn ) | 
						
							| 107 | 105 106 | eqeltrrd | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝐴  ↦  ( if ( 0  ≤  - 𝐶 ,  - 𝐶 ,  0 )  ·  if ( 0  ≤  𝐵 ,  𝐵 ,  0 ) ) )  ∈  MblFn ) | 
						
							| 108 | 19 52 55 107 | iblmulc2nc | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝐴  ↦  ( if ( 0  ≤  - 𝐶 ,  - 𝐶 ,  0 )  ·  if ( 0  ≤  𝐵 ,  𝐵 ,  0 ) ) )  ∈  𝐿1 ) | 
						
							| 109 |  | ovexd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  ( if ( 0  ≤  - 𝐶 ,  - 𝐶 ,  0 )  ·  if ( 0  ≤  - 𝐵 ,  - 𝐵 ,  0 ) )  ∈  V ) | 
						
							| 110 | 27 40 67 42 69 | offval2 | ⊢ ( 𝜑  →  ( ( 𝐴  ×  { if ( 0  ≤  - 𝐶 ,  - 𝐶 ,  0 ) } )  ∘f   ·  ( 𝑥  ∈  𝐴  ↦  if ( 0  ≤  - 𝐵 ,  - 𝐵 ,  0 ) ) )  =  ( 𝑥  ∈  𝐴  ↦  ( if ( 0  ≤  - 𝐶 ,  - 𝐶 ,  0 )  ·  if ( 0  ≤  - 𝐵 ,  - 𝐵 ,  0 ) ) ) ) | 
						
							| 111 | 72 18 74 | mbfmulc2re | ⊢ ( 𝜑  →  ( ( 𝐴  ×  { if ( 0  ≤  - 𝐶 ,  - 𝐶 ,  0 ) } )  ∘f   ·  ( 𝑥  ∈  𝐴  ↦  if ( 0  ≤  - 𝐵 ,  - 𝐵 ,  0 ) ) )  ∈  MblFn ) | 
						
							| 112 | 110 111 | eqeltrrd | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝐴  ↦  ( if ( 0  ≤  - 𝐶 ,  - 𝐶 ,  0 )  ·  if ( 0  ≤  - 𝐵 ,  - 𝐵 ,  0 ) ) )  ∈  MblFn ) | 
						
							| 113 | 19 67 68 112 | iblmulc2nc | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝐴  ↦  ( if ( 0  ≤  - 𝐶 ,  - 𝐶 ,  0 )  ·  if ( 0  ≤  - 𝐵 ,  - 𝐵 ,  0 ) ) )  ∈  𝐿1 ) | 
						
							| 114 | 79 | oveq2d | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  ( if ( 0  ≤  - 𝐶 ,  - 𝐶 ,  0 )  ·  ( if ( 0  ≤  𝐵 ,  𝐵 ,  0 )  −  if ( 0  ≤  - 𝐵 ,  - 𝐵 ,  0 ) ) )  =  ( if ( 0  ≤  - 𝐶 ,  - 𝐶 ,  0 )  ·  𝐵 ) ) | 
						
							| 115 | 20 59 73 | subdid | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  ( if ( 0  ≤  - 𝐶 ,  - 𝐶 ,  0 )  ·  ( if ( 0  ≤  𝐵 ,  𝐵 ,  0 )  −  if ( 0  ≤  - 𝐵 ,  - 𝐵 ,  0 ) ) )  =  ( ( if ( 0  ≤  - 𝐶 ,  - 𝐶 ,  0 )  ·  if ( 0  ≤  𝐵 ,  𝐵 ,  0 ) )  −  ( if ( 0  ≤  - 𝐶 ,  - 𝐶 ,  0 )  ·  if ( 0  ≤  - 𝐵 ,  - 𝐵 ,  0 ) ) ) ) | 
						
							| 116 | 114 115 | eqtr3d | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  ( if ( 0  ≤  - 𝐶 ,  - 𝐶 ,  0 )  ·  𝐵 )  =  ( ( if ( 0  ≤  - 𝐶 ,  - 𝐶 ,  0 )  ·  if ( 0  ≤  𝐵 ,  𝐵 ,  0 ) )  −  ( if ( 0  ≤  - 𝐶 ,  - 𝐶 ,  0 )  ·  if ( 0  ≤  - 𝐵 ,  - 𝐵 ,  0 ) ) ) ) | 
						
							| 117 | 116 | mpteq2dva | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝐴  ↦  ( if ( 0  ≤  - 𝐶 ,  - 𝐶 ,  0 )  ·  𝐵 ) )  =  ( 𝑥  ∈  𝐴  ↦  ( ( if ( 0  ≤  - 𝐶 ,  - 𝐶 ,  0 )  ·  if ( 0  ≤  𝐵 ,  𝐵 ,  0 ) )  −  ( if ( 0  ≤  - 𝐶 ,  - 𝐶 ,  0 )  ·  if ( 0  ≤  - 𝐵 ,  - 𝐵 ,  0 ) ) ) ) ) | 
						
							| 118 | 43 117 | eqtrd | ⊢ ( 𝜑  →  ( ( 𝐴  ×  { if ( 0  ≤  - 𝐶 ,  - 𝐶 ,  0 ) } )  ∘f   ·  ( 𝑥  ∈  𝐴  ↦  𝐵 ) )  =  ( 𝑥  ∈  𝐴  ↦  ( ( if ( 0  ≤  - 𝐶 ,  - 𝐶 ,  0 )  ·  if ( 0  ≤  𝐵 ,  𝐵 ,  0 ) )  −  ( if ( 0  ≤  - 𝐶 ,  - 𝐶 ,  0 )  ·  if ( 0  ≤  - 𝐵 ,  - 𝐵 ,  0 ) ) ) ) ) | 
						
							| 119 | 118 44 | eqeltrrd | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝐴  ↦  ( ( if ( 0  ≤  - 𝐶 ,  - 𝐶 ,  0 )  ·  if ( 0  ≤  𝐵 ,  𝐵 ,  0 ) )  −  ( if ( 0  ≤  - 𝐶 ,  - 𝐶 ,  0 )  ·  if ( 0  ≤  - 𝐵 ,  - 𝐵 ,  0 ) ) ) )  ∈  MblFn ) | 
						
							| 120 | 104 108 109 113 119 | itgsubnc | ⊢ ( 𝜑  →  ∫ 𝐴 ( ( if ( 0  ≤  - 𝐶 ,  - 𝐶 ,  0 )  ·  if ( 0  ≤  𝐵 ,  𝐵 ,  0 ) )  −  ( if ( 0  ≤  - 𝐶 ,  - 𝐶 ,  0 )  ·  if ( 0  ≤  - 𝐵 ,  - 𝐵 ,  0 ) ) )  d 𝑥  =  ( ∫ 𝐴 ( if ( 0  ≤  - 𝐶 ,  - 𝐶 ,  0 )  ·  if ( 0  ≤  𝐵 ,  𝐵 ,  0 ) )  d 𝑥  −  ∫ 𝐴 ( if ( 0  ≤  - 𝐶 ,  - 𝐶 ,  0 )  ·  if ( 0  ≤  - 𝐵 ,  - 𝐵 ,  0 ) )  d 𝑥 ) ) | 
						
							| 121 | 116 | itgeq2dv | ⊢ ( 𝜑  →  ∫ 𝐴 ( if ( 0  ≤  - 𝐶 ,  - 𝐶 ,  0 )  ·  𝐵 )  d 𝑥  =  ∫ 𝐴 ( ( if ( 0  ≤  - 𝐶 ,  - 𝐶 ,  0 )  ·  if ( 0  ≤  𝐵 ,  𝐵 ,  0 ) )  −  ( if ( 0  ≤  - 𝐶 ,  - 𝐶 ,  0 )  ·  if ( 0  ≤  - 𝐵 ,  - 𝐵 ,  0 ) ) )  d 𝑥 ) | 
						
							| 122 | 88 | oveq2d | ⊢ ( 𝜑  →  ( if ( 0  ≤  - 𝐶 ,  - 𝐶 ,  0 )  ·  ∫ 𝐴 𝐵  d 𝑥 )  =  ( if ( 0  ≤  - 𝐶 ,  - 𝐶 ,  0 )  ·  ( ∫ 𝐴 if ( 0  ≤  𝐵 ,  𝐵 ,  0 )  d 𝑥  −  ∫ 𝐴 if ( 0  ≤  - 𝐵 ,  - 𝐵 ,  0 )  d 𝑥 ) ) ) | 
						
							| 123 | 19 90 91 | subdid | ⊢ ( 𝜑  →  ( if ( 0  ≤  - 𝐶 ,  - 𝐶 ,  0 )  ·  ( ∫ 𝐴 if ( 0  ≤  𝐵 ,  𝐵 ,  0 )  d 𝑥  −  ∫ 𝐴 if ( 0  ≤  - 𝐵 ,  - 𝐵 ,  0 )  d 𝑥 ) )  =  ( ( if ( 0  ≤  - 𝐶 ,  - 𝐶 ,  0 )  ·  ∫ 𝐴 if ( 0  ≤  𝐵 ,  𝐵 ,  0 )  d 𝑥 )  −  ( if ( 0  ≤  - 𝐶 ,  - 𝐶 ,  0 )  ·  ∫ 𝐴 if ( 0  ≤  - 𝐵 ,  - 𝐵 ,  0 )  d 𝑥 ) ) ) | 
						
							| 124 |  | max1 | ⊢ ( ( 0  ∈  ℝ  ∧  - 𝐶  ∈  ℝ )  →  0  ≤  if ( 0  ≤  - 𝐶 ,  - 𝐶 ,  0 ) ) | 
						
							| 125 | 11 16 124 | sylancr | ⊢ ( 𝜑  →  0  ≤  if ( 0  ≤  - 𝐶 ,  - 𝐶 ,  0 ) ) | 
						
							| 126 | 19 52 55 107 18 52 125 96 | itgmulc2nclem1 | ⊢ ( 𝜑  →  ( if ( 0  ≤  - 𝐶 ,  - 𝐶 ,  0 )  ·  ∫ 𝐴 if ( 0  ≤  𝐵 ,  𝐵 ,  0 )  d 𝑥 )  =  ∫ 𝐴 ( if ( 0  ≤  - 𝐶 ,  - 𝐶 ,  0 )  ·  if ( 0  ≤  𝐵 ,  𝐵 ,  0 ) )  d 𝑥 ) | 
						
							| 127 | 19 67 68 112 18 67 125 99 | itgmulc2nclem1 | ⊢ ( 𝜑  →  ( if ( 0  ≤  - 𝐶 ,  - 𝐶 ,  0 )  ·  ∫ 𝐴 if ( 0  ≤  - 𝐵 ,  - 𝐵 ,  0 )  d 𝑥 )  =  ∫ 𝐴 ( if ( 0  ≤  - 𝐶 ,  - 𝐶 ,  0 )  ·  if ( 0  ≤  - 𝐵 ,  - 𝐵 ,  0 ) )  d 𝑥 ) | 
						
							| 128 | 126 127 | oveq12d | ⊢ ( 𝜑  →  ( ( if ( 0  ≤  - 𝐶 ,  - 𝐶 ,  0 )  ·  ∫ 𝐴 if ( 0  ≤  𝐵 ,  𝐵 ,  0 )  d 𝑥 )  −  ( if ( 0  ≤  - 𝐶 ,  - 𝐶 ,  0 )  ·  ∫ 𝐴 if ( 0  ≤  - 𝐵 ,  - 𝐵 ,  0 )  d 𝑥 ) )  =  ( ∫ 𝐴 ( if ( 0  ≤  - 𝐶 ,  - 𝐶 ,  0 )  ·  if ( 0  ≤  𝐵 ,  𝐵 ,  0 ) )  d 𝑥  −  ∫ 𝐴 ( if ( 0  ≤  - 𝐶 ,  - 𝐶 ,  0 )  ·  if ( 0  ≤  - 𝐵 ,  - 𝐵 ,  0 ) )  d 𝑥 ) ) | 
						
							| 129 | 122 123 128 | 3eqtrd | ⊢ ( 𝜑  →  ( if ( 0  ≤  - 𝐶 ,  - 𝐶 ,  0 )  ·  ∫ 𝐴 𝐵  d 𝑥 )  =  ( ∫ 𝐴 ( if ( 0  ≤  - 𝐶 ,  - 𝐶 ,  0 )  ·  if ( 0  ≤  𝐵 ,  𝐵 ,  0 ) )  d 𝑥  −  ∫ 𝐴 ( if ( 0  ≤  - 𝐶 ,  - 𝐶 ,  0 )  ·  if ( 0  ≤  - 𝐵 ,  - 𝐵 ,  0 ) )  d 𝑥 ) ) | 
						
							| 130 | 120 121 129 | 3eqtr4d | ⊢ ( 𝜑  →  ∫ 𝐴 ( if ( 0  ≤  - 𝐶 ,  - 𝐶 ,  0 )  ·  𝐵 )  d 𝑥  =  ( if ( 0  ≤  - 𝐶 ,  - 𝐶 ,  0 )  ·  ∫ 𝐴 𝐵  d 𝑥 ) ) | 
						
							| 131 | 103 130 | oveq12d | ⊢ ( 𝜑  →  ( ∫ 𝐴 ( if ( 0  ≤  𝐶 ,  𝐶 ,  0 )  ·  𝐵 )  d 𝑥  −  ∫ 𝐴 ( if ( 0  ≤  - 𝐶 ,  - 𝐶 ,  0 )  ·  𝐵 )  d 𝑥 )  =  ( ( if ( 0  ≤  𝐶 ,  𝐶 ,  0 )  ·  ∫ 𝐴 𝐵  d 𝑥 )  −  ( if ( 0  ≤  - 𝐶 ,  - 𝐶 ,  0 )  ·  ∫ 𝐴 𝐵  d 𝑥 ) ) ) | 
						
							| 132 | 6 3 | itgcl | ⊢ ( 𝜑  →  ∫ 𝐴 𝐵  d 𝑥  ∈  ℂ ) | 
						
							| 133 | 14 19 132 | subdird | ⊢ ( 𝜑  →  ( ( if ( 0  ≤  𝐶 ,  𝐶 ,  0 )  −  if ( 0  ≤  - 𝐶 ,  - 𝐶 ,  0 ) )  ·  ∫ 𝐴 𝐵  d 𝑥 )  =  ( ( if ( 0  ≤  𝐶 ,  𝐶 ,  0 )  ·  ∫ 𝐴 𝐵  d 𝑥 )  −  ( if ( 0  ≤  - 𝐶 ,  - 𝐶 ,  0 )  ·  ∫ 𝐴 𝐵  d 𝑥 ) ) ) | 
						
							| 134 | 8 | oveq1d | ⊢ ( 𝜑  →  ( ( if ( 0  ≤  𝐶 ,  𝐶 ,  0 )  −  if ( 0  ≤  - 𝐶 ,  - 𝐶 ,  0 ) )  ·  ∫ 𝐴 𝐵  d 𝑥 )  =  ( 𝐶  ·  ∫ 𝐴 𝐵  d 𝑥 ) ) | 
						
							| 135 | 131 133 134 | 3eqtr2d | ⊢ ( 𝜑  →  ( ∫ 𝐴 ( if ( 0  ≤  𝐶 ,  𝐶 ,  0 )  ·  𝐵 )  d 𝑥  −  ∫ 𝐴 ( if ( 0  ≤  - 𝐶 ,  - 𝐶 ,  0 )  ·  𝐵 )  d 𝑥 )  =  ( 𝐶  ·  ∫ 𝐴 𝐵  d 𝑥 ) ) | 
						
							| 136 | 24 49 135 | 3eqtrrd | ⊢ ( 𝜑  →  ( 𝐶  ·  ∫ 𝐴 𝐵  d 𝑥 )  =  ∫ 𝐴 ( 𝐶  ·  𝐵 )  d 𝑥 ) |