| Step |
Hyp |
Ref |
Expression |
| 1 |
|
itgmulc2nc.1 |
⊢ ( 𝜑 → 𝐶 ∈ ℂ ) |
| 2 |
|
itgmulc2nc.2 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ 𝑉 ) |
| 3 |
|
itgmulc2nc.3 |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ 𝐿1 ) |
| 4 |
|
itgmulc2nc.m |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ ( 𝐶 · 𝐵 ) ) ∈ MblFn ) |
| 5 |
1
|
recld |
⊢ ( 𝜑 → ( ℜ ‘ 𝐶 ) ∈ ℝ ) |
| 6 |
5
|
recnd |
⊢ ( 𝜑 → ( ℜ ‘ 𝐶 ) ∈ ℂ ) |
| 7 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ℜ ‘ 𝐶 ) ∈ ℂ ) |
| 8 |
|
iblmbf |
⊢ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ 𝐿1 → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ MblFn ) |
| 9 |
3 8
|
syl |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ MblFn ) |
| 10 |
9 2
|
mbfmptcl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ ℂ ) |
| 11 |
10
|
recld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ℜ ‘ 𝐵 ) ∈ ℝ ) |
| 12 |
11
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ℜ ‘ 𝐵 ) ∈ ℂ ) |
| 13 |
7 12
|
mulcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ( ℜ ‘ 𝐶 ) · ( ℜ ‘ 𝐵 ) ) ∈ ℂ ) |
| 14 |
10
|
iblcn |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ 𝐿1 ↔ ( ( 𝑥 ∈ 𝐴 ↦ ( ℜ ‘ 𝐵 ) ) ∈ 𝐿1 ∧ ( 𝑥 ∈ 𝐴 ↦ ( ℑ ‘ 𝐵 ) ) ∈ 𝐿1 ) ) ) |
| 15 |
3 14
|
mpbid |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ↦ ( ℜ ‘ 𝐵 ) ) ∈ 𝐿1 ∧ ( 𝑥 ∈ 𝐴 ↦ ( ℑ ‘ 𝐵 ) ) ∈ 𝐿1 ) ) |
| 16 |
15
|
simpld |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ ( ℜ ‘ 𝐵 ) ) ∈ 𝐿1 ) |
| 17 |
|
ovexd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝐶 · 𝐵 ) ∈ V ) |
| 18 |
4 17
|
mbfdm2 |
⊢ ( 𝜑 → 𝐴 ∈ dom vol ) |
| 19 |
|
fconstmpt |
⊢ ( 𝐴 × { ( ℜ ‘ 𝐶 ) } ) = ( 𝑥 ∈ 𝐴 ↦ ( ℜ ‘ 𝐶 ) ) |
| 20 |
19
|
a1i |
⊢ ( 𝜑 → ( 𝐴 × { ( ℜ ‘ 𝐶 ) } ) = ( 𝑥 ∈ 𝐴 ↦ ( ℜ ‘ 𝐶 ) ) ) |
| 21 |
|
eqidd |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ ( ℜ ‘ 𝐵 ) ) = ( 𝑥 ∈ 𝐴 ↦ ( ℜ ‘ 𝐵 ) ) ) |
| 22 |
18 7 11 20 21
|
offval2 |
⊢ ( 𝜑 → ( ( 𝐴 × { ( ℜ ‘ 𝐶 ) } ) ∘f · ( 𝑥 ∈ 𝐴 ↦ ( ℜ ‘ 𝐵 ) ) ) = ( 𝑥 ∈ 𝐴 ↦ ( ( ℜ ‘ 𝐶 ) · ( ℜ ‘ 𝐵 ) ) ) ) |
| 23 |
|
iblmbf |
⊢ ( ( 𝑥 ∈ 𝐴 ↦ ( ℜ ‘ 𝐵 ) ) ∈ 𝐿1 → ( 𝑥 ∈ 𝐴 ↦ ( ℜ ‘ 𝐵 ) ) ∈ MblFn ) |
| 24 |
16 23
|
syl |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ ( ℜ ‘ 𝐵 ) ) ∈ MblFn ) |
| 25 |
12
|
fmpttd |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ ( ℜ ‘ 𝐵 ) ) : 𝐴 ⟶ ℂ ) |
| 26 |
24 5 25
|
mbfmulc2re |
⊢ ( 𝜑 → ( ( 𝐴 × { ( ℜ ‘ 𝐶 ) } ) ∘f · ( 𝑥 ∈ 𝐴 ↦ ( ℜ ‘ 𝐵 ) ) ) ∈ MblFn ) |
| 27 |
22 26
|
eqeltrrd |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ ( ( ℜ ‘ 𝐶 ) · ( ℜ ‘ 𝐵 ) ) ) ∈ MblFn ) |
| 28 |
6 11 16 27
|
iblmulc2nc |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ ( ( ℜ ‘ 𝐶 ) · ( ℜ ‘ 𝐵 ) ) ) ∈ 𝐿1 ) |
| 29 |
13 28
|
itgcl |
⊢ ( 𝜑 → ∫ 𝐴 ( ( ℜ ‘ 𝐶 ) · ( ℜ ‘ 𝐵 ) ) d 𝑥 ∈ ℂ ) |
| 30 |
|
ax-icn |
⊢ i ∈ ℂ |
| 31 |
10
|
imcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ℑ ‘ 𝐵 ) ∈ ℝ ) |
| 32 |
31
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ℑ ‘ 𝐵 ) ∈ ℂ ) |
| 33 |
7 32
|
mulcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ( ℜ ‘ 𝐶 ) · ( ℑ ‘ 𝐵 ) ) ∈ ℂ ) |
| 34 |
15
|
simprd |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ ( ℑ ‘ 𝐵 ) ) ∈ 𝐿1 ) |
| 35 |
|
eqidd |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ ( ℑ ‘ 𝐵 ) ) = ( 𝑥 ∈ 𝐴 ↦ ( ℑ ‘ 𝐵 ) ) ) |
| 36 |
18 7 31 20 35
|
offval2 |
⊢ ( 𝜑 → ( ( 𝐴 × { ( ℜ ‘ 𝐶 ) } ) ∘f · ( 𝑥 ∈ 𝐴 ↦ ( ℑ ‘ 𝐵 ) ) ) = ( 𝑥 ∈ 𝐴 ↦ ( ( ℜ ‘ 𝐶 ) · ( ℑ ‘ 𝐵 ) ) ) ) |
| 37 |
|
iblmbf |
⊢ ( ( 𝑥 ∈ 𝐴 ↦ ( ℑ ‘ 𝐵 ) ) ∈ 𝐿1 → ( 𝑥 ∈ 𝐴 ↦ ( ℑ ‘ 𝐵 ) ) ∈ MblFn ) |
| 38 |
34 37
|
syl |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ ( ℑ ‘ 𝐵 ) ) ∈ MblFn ) |
| 39 |
32
|
fmpttd |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ ( ℑ ‘ 𝐵 ) ) : 𝐴 ⟶ ℂ ) |
| 40 |
38 5 39
|
mbfmulc2re |
⊢ ( 𝜑 → ( ( 𝐴 × { ( ℜ ‘ 𝐶 ) } ) ∘f · ( 𝑥 ∈ 𝐴 ↦ ( ℑ ‘ 𝐵 ) ) ) ∈ MblFn ) |
| 41 |
36 40
|
eqeltrrd |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ ( ( ℜ ‘ 𝐶 ) · ( ℑ ‘ 𝐵 ) ) ) ∈ MblFn ) |
| 42 |
6 31 34 41
|
iblmulc2nc |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ ( ( ℜ ‘ 𝐶 ) · ( ℑ ‘ 𝐵 ) ) ) ∈ 𝐿1 ) |
| 43 |
33 42
|
itgcl |
⊢ ( 𝜑 → ∫ 𝐴 ( ( ℜ ‘ 𝐶 ) · ( ℑ ‘ 𝐵 ) ) d 𝑥 ∈ ℂ ) |
| 44 |
|
mulcl |
⊢ ( ( i ∈ ℂ ∧ ∫ 𝐴 ( ( ℜ ‘ 𝐶 ) · ( ℑ ‘ 𝐵 ) ) d 𝑥 ∈ ℂ ) → ( i · ∫ 𝐴 ( ( ℜ ‘ 𝐶 ) · ( ℑ ‘ 𝐵 ) ) d 𝑥 ) ∈ ℂ ) |
| 45 |
30 43 44
|
sylancr |
⊢ ( 𝜑 → ( i · ∫ 𝐴 ( ( ℜ ‘ 𝐶 ) · ( ℑ ‘ 𝐵 ) ) d 𝑥 ) ∈ ℂ ) |
| 46 |
1
|
imcld |
⊢ ( 𝜑 → ( ℑ ‘ 𝐶 ) ∈ ℝ ) |
| 47 |
46
|
recnd |
⊢ ( 𝜑 → ( ℑ ‘ 𝐶 ) ∈ ℂ ) |
| 48 |
47
|
negcld |
⊢ ( 𝜑 → - ( ℑ ‘ 𝐶 ) ∈ ℂ ) |
| 49 |
48
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → - ( ℑ ‘ 𝐶 ) ∈ ℂ ) |
| 50 |
49 32
|
mulcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( - ( ℑ ‘ 𝐶 ) · ( ℑ ‘ 𝐵 ) ) ∈ ℂ ) |
| 51 |
|
fconstmpt |
⊢ ( 𝐴 × { - ( ℑ ‘ 𝐶 ) } ) = ( 𝑥 ∈ 𝐴 ↦ - ( ℑ ‘ 𝐶 ) ) |
| 52 |
51
|
a1i |
⊢ ( 𝜑 → ( 𝐴 × { - ( ℑ ‘ 𝐶 ) } ) = ( 𝑥 ∈ 𝐴 ↦ - ( ℑ ‘ 𝐶 ) ) ) |
| 53 |
18 49 31 52 35
|
offval2 |
⊢ ( 𝜑 → ( ( 𝐴 × { - ( ℑ ‘ 𝐶 ) } ) ∘f · ( 𝑥 ∈ 𝐴 ↦ ( ℑ ‘ 𝐵 ) ) ) = ( 𝑥 ∈ 𝐴 ↦ ( - ( ℑ ‘ 𝐶 ) · ( ℑ ‘ 𝐵 ) ) ) ) |
| 54 |
46
|
renegcld |
⊢ ( 𝜑 → - ( ℑ ‘ 𝐶 ) ∈ ℝ ) |
| 55 |
38 54 39
|
mbfmulc2re |
⊢ ( 𝜑 → ( ( 𝐴 × { - ( ℑ ‘ 𝐶 ) } ) ∘f · ( 𝑥 ∈ 𝐴 ↦ ( ℑ ‘ 𝐵 ) ) ) ∈ MblFn ) |
| 56 |
53 55
|
eqeltrrd |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ ( - ( ℑ ‘ 𝐶 ) · ( ℑ ‘ 𝐵 ) ) ) ∈ MblFn ) |
| 57 |
48 31 34 56
|
iblmulc2nc |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ ( - ( ℑ ‘ 𝐶 ) · ( ℑ ‘ 𝐵 ) ) ) ∈ 𝐿1 ) |
| 58 |
50 57
|
itgcl |
⊢ ( 𝜑 → ∫ 𝐴 ( - ( ℑ ‘ 𝐶 ) · ( ℑ ‘ 𝐵 ) ) d 𝑥 ∈ ℂ ) |
| 59 |
47
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ℑ ‘ 𝐶 ) ∈ ℂ ) |
| 60 |
59 12
|
mulcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ( ℑ ‘ 𝐶 ) · ( ℜ ‘ 𝐵 ) ) ∈ ℂ ) |
| 61 |
|
fconstmpt |
⊢ ( 𝐴 × { ( ℑ ‘ 𝐶 ) } ) = ( 𝑥 ∈ 𝐴 ↦ ( ℑ ‘ 𝐶 ) ) |
| 62 |
61
|
a1i |
⊢ ( 𝜑 → ( 𝐴 × { ( ℑ ‘ 𝐶 ) } ) = ( 𝑥 ∈ 𝐴 ↦ ( ℑ ‘ 𝐶 ) ) ) |
| 63 |
18 59 11 62 21
|
offval2 |
⊢ ( 𝜑 → ( ( 𝐴 × { ( ℑ ‘ 𝐶 ) } ) ∘f · ( 𝑥 ∈ 𝐴 ↦ ( ℜ ‘ 𝐵 ) ) ) = ( 𝑥 ∈ 𝐴 ↦ ( ( ℑ ‘ 𝐶 ) · ( ℜ ‘ 𝐵 ) ) ) ) |
| 64 |
24 46 25
|
mbfmulc2re |
⊢ ( 𝜑 → ( ( 𝐴 × { ( ℑ ‘ 𝐶 ) } ) ∘f · ( 𝑥 ∈ 𝐴 ↦ ( ℜ ‘ 𝐵 ) ) ) ∈ MblFn ) |
| 65 |
63 64
|
eqeltrrd |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ ( ( ℑ ‘ 𝐶 ) · ( ℜ ‘ 𝐵 ) ) ) ∈ MblFn ) |
| 66 |
47 11 16 65
|
iblmulc2nc |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ ( ( ℑ ‘ 𝐶 ) · ( ℜ ‘ 𝐵 ) ) ) ∈ 𝐿1 ) |
| 67 |
60 66
|
itgcl |
⊢ ( 𝜑 → ∫ 𝐴 ( ( ℑ ‘ 𝐶 ) · ( ℜ ‘ 𝐵 ) ) d 𝑥 ∈ ℂ ) |
| 68 |
|
mulcl |
⊢ ( ( i ∈ ℂ ∧ ∫ 𝐴 ( ( ℑ ‘ 𝐶 ) · ( ℜ ‘ 𝐵 ) ) d 𝑥 ∈ ℂ ) → ( i · ∫ 𝐴 ( ( ℑ ‘ 𝐶 ) · ( ℜ ‘ 𝐵 ) ) d 𝑥 ) ∈ ℂ ) |
| 69 |
30 67 68
|
sylancr |
⊢ ( 𝜑 → ( i · ∫ 𝐴 ( ( ℑ ‘ 𝐶 ) · ( ℜ ‘ 𝐵 ) ) d 𝑥 ) ∈ ℂ ) |
| 70 |
29 45 58 69
|
add4d |
⊢ ( 𝜑 → ( ( ∫ 𝐴 ( ( ℜ ‘ 𝐶 ) · ( ℜ ‘ 𝐵 ) ) d 𝑥 + ( i · ∫ 𝐴 ( ( ℜ ‘ 𝐶 ) · ( ℑ ‘ 𝐵 ) ) d 𝑥 ) ) + ( ∫ 𝐴 ( - ( ℑ ‘ 𝐶 ) · ( ℑ ‘ 𝐵 ) ) d 𝑥 + ( i · ∫ 𝐴 ( ( ℑ ‘ 𝐶 ) · ( ℜ ‘ 𝐵 ) ) d 𝑥 ) ) ) = ( ( ∫ 𝐴 ( ( ℜ ‘ 𝐶 ) · ( ℜ ‘ 𝐵 ) ) d 𝑥 + ∫ 𝐴 ( - ( ℑ ‘ 𝐶 ) · ( ℑ ‘ 𝐵 ) ) d 𝑥 ) + ( ( i · ∫ 𝐴 ( ( ℜ ‘ 𝐶 ) · ( ℑ ‘ 𝐵 ) ) d 𝑥 ) + ( i · ∫ 𝐴 ( ( ℑ ‘ 𝐶 ) · ( ℜ ‘ 𝐵 ) ) d 𝑥 ) ) ) ) |
| 71 |
30
|
a1i |
⊢ ( 𝜑 → i ∈ ℂ ) |
| 72 |
71 47
|
mulcld |
⊢ ( 𝜑 → ( i · ( ℑ ‘ 𝐶 ) ) ∈ ℂ ) |
| 73 |
2 3
|
itgcl |
⊢ ( 𝜑 → ∫ 𝐴 𝐵 d 𝑥 ∈ ℂ ) |
| 74 |
6 72 73
|
adddird |
⊢ ( 𝜑 → ( ( ( ℜ ‘ 𝐶 ) + ( i · ( ℑ ‘ 𝐶 ) ) ) · ∫ 𝐴 𝐵 d 𝑥 ) = ( ( ( ℜ ‘ 𝐶 ) · ∫ 𝐴 𝐵 d 𝑥 ) + ( ( i · ( ℑ ‘ 𝐶 ) ) · ∫ 𝐴 𝐵 d 𝑥 ) ) ) |
| 75 |
2 3
|
itgcnval |
⊢ ( 𝜑 → ∫ 𝐴 𝐵 d 𝑥 = ( ∫ 𝐴 ( ℜ ‘ 𝐵 ) d 𝑥 + ( i · ∫ 𝐴 ( ℑ ‘ 𝐵 ) d 𝑥 ) ) ) |
| 76 |
75
|
oveq2d |
⊢ ( 𝜑 → ( ( ℜ ‘ 𝐶 ) · ∫ 𝐴 𝐵 d 𝑥 ) = ( ( ℜ ‘ 𝐶 ) · ( ∫ 𝐴 ( ℜ ‘ 𝐵 ) d 𝑥 + ( i · ∫ 𝐴 ( ℑ ‘ 𝐵 ) d 𝑥 ) ) ) ) |
| 77 |
11 16
|
itgcl |
⊢ ( 𝜑 → ∫ 𝐴 ( ℜ ‘ 𝐵 ) d 𝑥 ∈ ℂ ) |
| 78 |
31 34
|
itgcl |
⊢ ( 𝜑 → ∫ 𝐴 ( ℑ ‘ 𝐵 ) d 𝑥 ∈ ℂ ) |
| 79 |
|
mulcl |
⊢ ( ( i ∈ ℂ ∧ ∫ 𝐴 ( ℑ ‘ 𝐵 ) d 𝑥 ∈ ℂ ) → ( i · ∫ 𝐴 ( ℑ ‘ 𝐵 ) d 𝑥 ) ∈ ℂ ) |
| 80 |
30 78 79
|
sylancr |
⊢ ( 𝜑 → ( i · ∫ 𝐴 ( ℑ ‘ 𝐵 ) d 𝑥 ) ∈ ℂ ) |
| 81 |
6 77 80
|
adddid |
⊢ ( 𝜑 → ( ( ℜ ‘ 𝐶 ) · ( ∫ 𝐴 ( ℜ ‘ 𝐵 ) d 𝑥 + ( i · ∫ 𝐴 ( ℑ ‘ 𝐵 ) d 𝑥 ) ) ) = ( ( ( ℜ ‘ 𝐶 ) · ∫ 𝐴 ( ℜ ‘ 𝐵 ) d 𝑥 ) + ( ( ℜ ‘ 𝐶 ) · ( i · ∫ 𝐴 ( ℑ ‘ 𝐵 ) d 𝑥 ) ) ) ) |
| 82 |
6 11 16 27 5 11
|
itgmulc2nclem2 |
⊢ ( 𝜑 → ( ( ℜ ‘ 𝐶 ) · ∫ 𝐴 ( ℜ ‘ 𝐵 ) d 𝑥 ) = ∫ 𝐴 ( ( ℜ ‘ 𝐶 ) · ( ℜ ‘ 𝐵 ) ) d 𝑥 ) |
| 83 |
6 71 78
|
mul12d |
⊢ ( 𝜑 → ( ( ℜ ‘ 𝐶 ) · ( i · ∫ 𝐴 ( ℑ ‘ 𝐵 ) d 𝑥 ) ) = ( i · ( ( ℜ ‘ 𝐶 ) · ∫ 𝐴 ( ℑ ‘ 𝐵 ) d 𝑥 ) ) ) |
| 84 |
6 31 34 41 5 31
|
itgmulc2nclem2 |
⊢ ( 𝜑 → ( ( ℜ ‘ 𝐶 ) · ∫ 𝐴 ( ℑ ‘ 𝐵 ) d 𝑥 ) = ∫ 𝐴 ( ( ℜ ‘ 𝐶 ) · ( ℑ ‘ 𝐵 ) ) d 𝑥 ) |
| 85 |
84
|
oveq2d |
⊢ ( 𝜑 → ( i · ( ( ℜ ‘ 𝐶 ) · ∫ 𝐴 ( ℑ ‘ 𝐵 ) d 𝑥 ) ) = ( i · ∫ 𝐴 ( ( ℜ ‘ 𝐶 ) · ( ℑ ‘ 𝐵 ) ) d 𝑥 ) ) |
| 86 |
83 85
|
eqtrd |
⊢ ( 𝜑 → ( ( ℜ ‘ 𝐶 ) · ( i · ∫ 𝐴 ( ℑ ‘ 𝐵 ) d 𝑥 ) ) = ( i · ∫ 𝐴 ( ( ℜ ‘ 𝐶 ) · ( ℑ ‘ 𝐵 ) ) d 𝑥 ) ) |
| 87 |
82 86
|
oveq12d |
⊢ ( 𝜑 → ( ( ( ℜ ‘ 𝐶 ) · ∫ 𝐴 ( ℜ ‘ 𝐵 ) d 𝑥 ) + ( ( ℜ ‘ 𝐶 ) · ( i · ∫ 𝐴 ( ℑ ‘ 𝐵 ) d 𝑥 ) ) ) = ( ∫ 𝐴 ( ( ℜ ‘ 𝐶 ) · ( ℜ ‘ 𝐵 ) ) d 𝑥 + ( i · ∫ 𝐴 ( ( ℜ ‘ 𝐶 ) · ( ℑ ‘ 𝐵 ) ) d 𝑥 ) ) ) |
| 88 |
76 81 87
|
3eqtrd |
⊢ ( 𝜑 → ( ( ℜ ‘ 𝐶 ) · ∫ 𝐴 𝐵 d 𝑥 ) = ( ∫ 𝐴 ( ( ℜ ‘ 𝐶 ) · ( ℜ ‘ 𝐵 ) ) d 𝑥 + ( i · ∫ 𝐴 ( ( ℜ ‘ 𝐶 ) · ( ℑ ‘ 𝐵 ) ) d 𝑥 ) ) ) |
| 89 |
75
|
oveq2d |
⊢ ( 𝜑 → ( ( i · ( ℑ ‘ 𝐶 ) ) · ∫ 𝐴 𝐵 d 𝑥 ) = ( ( i · ( ℑ ‘ 𝐶 ) ) · ( ∫ 𝐴 ( ℜ ‘ 𝐵 ) d 𝑥 + ( i · ∫ 𝐴 ( ℑ ‘ 𝐵 ) d 𝑥 ) ) ) ) |
| 90 |
72 77 80
|
adddid |
⊢ ( 𝜑 → ( ( i · ( ℑ ‘ 𝐶 ) ) · ( ∫ 𝐴 ( ℜ ‘ 𝐵 ) d 𝑥 + ( i · ∫ 𝐴 ( ℑ ‘ 𝐵 ) d 𝑥 ) ) ) = ( ( ( i · ( ℑ ‘ 𝐶 ) ) · ∫ 𝐴 ( ℜ ‘ 𝐵 ) d 𝑥 ) + ( ( i · ( ℑ ‘ 𝐶 ) ) · ( i · ∫ 𝐴 ( ℑ ‘ 𝐵 ) d 𝑥 ) ) ) ) |
| 91 |
71 47 77
|
mulassd |
⊢ ( 𝜑 → ( ( i · ( ℑ ‘ 𝐶 ) ) · ∫ 𝐴 ( ℜ ‘ 𝐵 ) d 𝑥 ) = ( i · ( ( ℑ ‘ 𝐶 ) · ∫ 𝐴 ( ℜ ‘ 𝐵 ) d 𝑥 ) ) ) |
| 92 |
47 11 16 65 46 11
|
itgmulc2nclem2 |
⊢ ( 𝜑 → ( ( ℑ ‘ 𝐶 ) · ∫ 𝐴 ( ℜ ‘ 𝐵 ) d 𝑥 ) = ∫ 𝐴 ( ( ℑ ‘ 𝐶 ) · ( ℜ ‘ 𝐵 ) ) d 𝑥 ) |
| 93 |
92
|
oveq2d |
⊢ ( 𝜑 → ( i · ( ( ℑ ‘ 𝐶 ) · ∫ 𝐴 ( ℜ ‘ 𝐵 ) d 𝑥 ) ) = ( i · ∫ 𝐴 ( ( ℑ ‘ 𝐶 ) · ( ℜ ‘ 𝐵 ) ) d 𝑥 ) ) |
| 94 |
91 93
|
eqtrd |
⊢ ( 𝜑 → ( ( i · ( ℑ ‘ 𝐶 ) ) · ∫ 𝐴 ( ℜ ‘ 𝐵 ) d 𝑥 ) = ( i · ∫ 𝐴 ( ( ℑ ‘ 𝐶 ) · ( ℜ ‘ 𝐵 ) ) d 𝑥 ) ) |
| 95 |
71 47 71 78
|
mul4d |
⊢ ( 𝜑 → ( ( i · ( ℑ ‘ 𝐶 ) ) · ( i · ∫ 𝐴 ( ℑ ‘ 𝐵 ) d 𝑥 ) ) = ( ( i · i ) · ( ( ℑ ‘ 𝐶 ) · ∫ 𝐴 ( ℑ ‘ 𝐵 ) d 𝑥 ) ) ) |
| 96 |
|
ixi |
⊢ ( i · i ) = - 1 |
| 97 |
96
|
oveq1i |
⊢ ( ( i · i ) · ( ( ℑ ‘ 𝐶 ) · ∫ 𝐴 ( ℑ ‘ 𝐵 ) d 𝑥 ) ) = ( - 1 · ( ( ℑ ‘ 𝐶 ) · ∫ 𝐴 ( ℑ ‘ 𝐵 ) d 𝑥 ) ) |
| 98 |
47 78
|
mulcld |
⊢ ( 𝜑 → ( ( ℑ ‘ 𝐶 ) · ∫ 𝐴 ( ℑ ‘ 𝐵 ) d 𝑥 ) ∈ ℂ ) |
| 99 |
98
|
mulm1d |
⊢ ( 𝜑 → ( - 1 · ( ( ℑ ‘ 𝐶 ) · ∫ 𝐴 ( ℑ ‘ 𝐵 ) d 𝑥 ) ) = - ( ( ℑ ‘ 𝐶 ) · ∫ 𝐴 ( ℑ ‘ 𝐵 ) d 𝑥 ) ) |
| 100 |
97 99
|
eqtrid |
⊢ ( 𝜑 → ( ( i · i ) · ( ( ℑ ‘ 𝐶 ) · ∫ 𝐴 ( ℑ ‘ 𝐵 ) d 𝑥 ) ) = - ( ( ℑ ‘ 𝐶 ) · ∫ 𝐴 ( ℑ ‘ 𝐵 ) d 𝑥 ) ) |
| 101 |
47 78
|
mulneg1d |
⊢ ( 𝜑 → ( - ( ℑ ‘ 𝐶 ) · ∫ 𝐴 ( ℑ ‘ 𝐵 ) d 𝑥 ) = - ( ( ℑ ‘ 𝐶 ) · ∫ 𝐴 ( ℑ ‘ 𝐵 ) d 𝑥 ) ) |
| 102 |
48 31 34 56 54 31
|
itgmulc2nclem2 |
⊢ ( 𝜑 → ( - ( ℑ ‘ 𝐶 ) · ∫ 𝐴 ( ℑ ‘ 𝐵 ) d 𝑥 ) = ∫ 𝐴 ( - ( ℑ ‘ 𝐶 ) · ( ℑ ‘ 𝐵 ) ) d 𝑥 ) |
| 103 |
101 102
|
eqtr3d |
⊢ ( 𝜑 → - ( ( ℑ ‘ 𝐶 ) · ∫ 𝐴 ( ℑ ‘ 𝐵 ) d 𝑥 ) = ∫ 𝐴 ( - ( ℑ ‘ 𝐶 ) · ( ℑ ‘ 𝐵 ) ) d 𝑥 ) |
| 104 |
95 100 103
|
3eqtrd |
⊢ ( 𝜑 → ( ( i · ( ℑ ‘ 𝐶 ) ) · ( i · ∫ 𝐴 ( ℑ ‘ 𝐵 ) d 𝑥 ) ) = ∫ 𝐴 ( - ( ℑ ‘ 𝐶 ) · ( ℑ ‘ 𝐵 ) ) d 𝑥 ) |
| 105 |
94 104
|
oveq12d |
⊢ ( 𝜑 → ( ( ( i · ( ℑ ‘ 𝐶 ) ) · ∫ 𝐴 ( ℜ ‘ 𝐵 ) d 𝑥 ) + ( ( i · ( ℑ ‘ 𝐶 ) ) · ( i · ∫ 𝐴 ( ℑ ‘ 𝐵 ) d 𝑥 ) ) ) = ( ( i · ∫ 𝐴 ( ( ℑ ‘ 𝐶 ) · ( ℜ ‘ 𝐵 ) ) d 𝑥 ) + ∫ 𝐴 ( - ( ℑ ‘ 𝐶 ) · ( ℑ ‘ 𝐵 ) ) d 𝑥 ) ) |
| 106 |
69 58
|
addcomd |
⊢ ( 𝜑 → ( ( i · ∫ 𝐴 ( ( ℑ ‘ 𝐶 ) · ( ℜ ‘ 𝐵 ) ) d 𝑥 ) + ∫ 𝐴 ( - ( ℑ ‘ 𝐶 ) · ( ℑ ‘ 𝐵 ) ) d 𝑥 ) = ( ∫ 𝐴 ( - ( ℑ ‘ 𝐶 ) · ( ℑ ‘ 𝐵 ) ) d 𝑥 + ( i · ∫ 𝐴 ( ( ℑ ‘ 𝐶 ) · ( ℜ ‘ 𝐵 ) ) d 𝑥 ) ) ) |
| 107 |
105 106
|
eqtrd |
⊢ ( 𝜑 → ( ( ( i · ( ℑ ‘ 𝐶 ) ) · ∫ 𝐴 ( ℜ ‘ 𝐵 ) d 𝑥 ) + ( ( i · ( ℑ ‘ 𝐶 ) ) · ( i · ∫ 𝐴 ( ℑ ‘ 𝐵 ) d 𝑥 ) ) ) = ( ∫ 𝐴 ( - ( ℑ ‘ 𝐶 ) · ( ℑ ‘ 𝐵 ) ) d 𝑥 + ( i · ∫ 𝐴 ( ( ℑ ‘ 𝐶 ) · ( ℜ ‘ 𝐵 ) ) d 𝑥 ) ) ) |
| 108 |
89 90 107
|
3eqtrd |
⊢ ( 𝜑 → ( ( i · ( ℑ ‘ 𝐶 ) ) · ∫ 𝐴 𝐵 d 𝑥 ) = ( ∫ 𝐴 ( - ( ℑ ‘ 𝐶 ) · ( ℑ ‘ 𝐵 ) ) d 𝑥 + ( i · ∫ 𝐴 ( ( ℑ ‘ 𝐶 ) · ( ℜ ‘ 𝐵 ) ) d 𝑥 ) ) ) |
| 109 |
88 108
|
oveq12d |
⊢ ( 𝜑 → ( ( ( ℜ ‘ 𝐶 ) · ∫ 𝐴 𝐵 d 𝑥 ) + ( ( i · ( ℑ ‘ 𝐶 ) ) · ∫ 𝐴 𝐵 d 𝑥 ) ) = ( ( ∫ 𝐴 ( ( ℜ ‘ 𝐶 ) · ( ℜ ‘ 𝐵 ) ) d 𝑥 + ( i · ∫ 𝐴 ( ( ℜ ‘ 𝐶 ) · ( ℑ ‘ 𝐵 ) ) d 𝑥 ) ) + ( ∫ 𝐴 ( - ( ℑ ‘ 𝐶 ) · ( ℑ ‘ 𝐵 ) ) d 𝑥 + ( i · ∫ 𝐴 ( ( ℑ ‘ 𝐶 ) · ( ℜ ‘ 𝐵 ) ) d 𝑥 ) ) ) ) |
| 110 |
74 109
|
eqtrd |
⊢ ( 𝜑 → ( ( ( ℜ ‘ 𝐶 ) + ( i · ( ℑ ‘ 𝐶 ) ) ) · ∫ 𝐴 𝐵 d 𝑥 ) = ( ( ∫ 𝐴 ( ( ℜ ‘ 𝐶 ) · ( ℜ ‘ 𝐵 ) ) d 𝑥 + ( i · ∫ 𝐴 ( ( ℜ ‘ 𝐶 ) · ( ℑ ‘ 𝐵 ) ) d 𝑥 ) ) + ( ∫ 𝐴 ( - ( ℑ ‘ 𝐶 ) · ( ℑ ‘ 𝐵 ) ) d 𝑥 + ( i · ∫ 𝐴 ( ( ℑ ‘ 𝐶 ) · ( ℜ ‘ 𝐵 ) ) d 𝑥 ) ) ) ) |
| 111 |
59 32
|
mulcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ( ℑ ‘ 𝐶 ) · ( ℑ ‘ 𝐵 ) ) ∈ ℂ ) |
| 112 |
18 59 31 62 35
|
offval2 |
⊢ ( 𝜑 → ( ( 𝐴 × { ( ℑ ‘ 𝐶 ) } ) ∘f · ( 𝑥 ∈ 𝐴 ↦ ( ℑ ‘ 𝐵 ) ) ) = ( 𝑥 ∈ 𝐴 ↦ ( ( ℑ ‘ 𝐶 ) · ( ℑ ‘ 𝐵 ) ) ) ) |
| 113 |
38 46 39
|
mbfmulc2re |
⊢ ( 𝜑 → ( ( 𝐴 × { ( ℑ ‘ 𝐶 ) } ) ∘f · ( 𝑥 ∈ 𝐴 ↦ ( ℑ ‘ 𝐵 ) ) ) ∈ MblFn ) |
| 114 |
112 113
|
eqeltrrd |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ ( ( ℑ ‘ 𝐶 ) · ( ℑ ‘ 𝐵 ) ) ) ∈ MblFn ) |
| 115 |
47 31 34 114
|
iblmulc2nc |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ ( ( ℑ ‘ 𝐶 ) · ( ℑ ‘ 𝐵 ) ) ) ∈ 𝐿1 ) |
| 116 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐶 ∈ ℂ ) |
| 117 |
116 10
|
mulcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝐶 · 𝐵 ) ∈ ℂ ) |
| 118 |
|
eqidd |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ ( 𝐶 · 𝐵 ) ) = ( 𝑥 ∈ 𝐴 ↦ ( 𝐶 · 𝐵 ) ) ) |
| 119 |
|
ref |
⊢ ℜ : ℂ ⟶ ℝ |
| 120 |
119
|
a1i |
⊢ ( 𝜑 → ℜ : ℂ ⟶ ℝ ) |
| 121 |
120
|
feqmptd |
⊢ ( 𝜑 → ℜ = ( 𝑘 ∈ ℂ ↦ ( ℜ ‘ 𝑘 ) ) ) |
| 122 |
|
fveq2 |
⊢ ( 𝑘 = ( 𝐶 · 𝐵 ) → ( ℜ ‘ 𝑘 ) = ( ℜ ‘ ( 𝐶 · 𝐵 ) ) ) |
| 123 |
117 118 121 122
|
fmptco |
⊢ ( 𝜑 → ( ℜ ∘ ( 𝑥 ∈ 𝐴 ↦ ( 𝐶 · 𝐵 ) ) ) = ( 𝑥 ∈ 𝐴 ↦ ( ℜ ‘ ( 𝐶 · 𝐵 ) ) ) ) |
| 124 |
116 10
|
remuld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ℜ ‘ ( 𝐶 · 𝐵 ) ) = ( ( ( ℜ ‘ 𝐶 ) · ( ℜ ‘ 𝐵 ) ) − ( ( ℑ ‘ 𝐶 ) · ( ℑ ‘ 𝐵 ) ) ) ) |
| 125 |
124
|
mpteq2dva |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ ( ℜ ‘ ( 𝐶 · 𝐵 ) ) ) = ( 𝑥 ∈ 𝐴 ↦ ( ( ( ℜ ‘ 𝐶 ) · ( ℜ ‘ 𝐵 ) ) − ( ( ℑ ‘ 𝐶 ) · ( ℑ ‘ 𝐵 ) ) ) ) ) |
| 126 |
123 125
|
eqtrd |
⊢ ( 𝜑 → ( ℜ ∘ ( 𝑥 ∈ 𝐴 ↦ ( 𝐶 · 𝐵 ) ) ) = ( 𝑥 ∈ 𝐴 ↦ ( ( ( ℜ ‘ 𝐶 ) · ( ℜ ‘ 𝐵 ) ) − ( ( ℑ ‘ 𝐶 ) · ( ℑ ‘ 𝐵 ) ) ) ) ) |
| 127 |
117
|
fmpttd |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ ( 𝐶 · 𝐵 ) ) : 𝐴 ⟶ ℂ ) |
| 128 |
|
ismbfcn |
⊢ ( ( 𝑥 ∈ 𝐴 ↦ ( 𝐶 · 𝐵 ) ) : 𝐴 ⟶ ℂ → ( ( 𝑥 ∈ 𝐴 ↦ ( 𝐶 · 𝐵 ) ) ∈ MblFn ↔ ( ( ℜ ∘ ( 𝑥 ∈ 𝐴 ↦ ( 𝐶 · 𝐵 ) ) ) ∈ MblFn ∧ ( ℑ ∘ ( 𝑥 ∈ 𝐴 ↦ ( 𝐶 · 𝐵 ) ) ) ∈ MblFn ) ) ) |
| 129 |
127 128
|
syl |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ↦ ( 𝐶 · 𝐵 ) ) ∈ MblFn ↔ ( ( ℜ ∘ ( 𝑥 ∈ 𝐴 ↦ ( 𝐶 · 𝐵 ) ) ) ∈ MblFn ∧ ( ℑ ∘ ( 𝑥 ∈ 𝐴 ↦ ( 𝐶 · 𝐵 ) ) ) ∈ MblFn ) ) ) |
| 130 |
4 129
|
mpbid |
⊢ ( 𝜑 → ( ( ℜ ∘ ( 𝑥 ∈ 𝐴 ↦ ( 𝐶 · 𝐵 ) ) ) ∈ MblFn ∧ ( ℑ ∘ ( 𝑥 ∈ 𝐴 ↦ ( 𝐶 · 𝐵 ) ) ) ∈ MblFn ) ) |
| 131 |
130
|
simpld |
⊢ ( 𝜑 → ( ℜ ∘ ( 𝑥 ∈ 𝐴 ↦ ( 𝐶 · 𝐵 ) ) ) ∈ MblFn ) |
| 132 |
126 131
|
eqeltrrd |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ ( ( ( ℜ ‘ 𝐶 ) · ( ℜ ‘ 𝐵 ) ) − ( ( ℑ ‘ 𝐶 ) · ( ℑ ‘ 𝐵 ) ) ) ) ∈ MblFn ) |
| 133 |
13 28 111 115 132
|
itgsubnc |
⊢ ( 𝜑 → ∫ 𝐴 ( ( ( ℜ ‘ 𝐶 ) · ( ℜ ‘ 𝐵 ) ) − ( ( ℑ ‘ 𝐶 ) · ( ℑ ‘ 𝐵 ) ) ) d 𝑥 = ( ∫ 𝐴 ( ( ℜ ‘ 𝐶 ) · ( ℜ ‘ 𝐵 ) ) d 𝑥 − ∫ 𝐴 ( ( ℑ ‘ 𝐶 ) · ( ℑ ‘ 𝐵 ) ) d 𝑥 ) ) |
| 134 |
124
|
itgeq2dv |
⊢ ( 𝜑 → ∫ 𝐴 ( ℜ ‘ ( 𝐶 · 𝐵 ) ) d 𝑥 = ∫ 𝐴 ( ( ( ℜ ‘ 𝐶 ) · ( ℜ ‘ 𝐵 ) ) − ( ( ℑ ‘ 𝐶 ) · ( ℑ ‘ 𝐵 ) ) ) d 𝑥 ) |
| 135 |
111 115
|
itgneg |
⊢ ( 𝜑 → - ∫ 𝐴 ( ( ℑ ‘ 𝐶 ) · ( ℑ ‘ 𝐵 ) ) d 𝑥 = ∫ 𝐴 - ( ( ℑ ‘ 𝐶 ) · ( ℑ ‘ 𝐵 ) ) d 𝑥 ) |
| 136 |
59 32
|
mulneg1d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( - ( ℑ ‘ 𝐶 ) · ( ℑ ‘ 𝐵 ) ) = - ( ( ℑ ‘ 𝐶 ) · ( ℑ ‘ 𝐵 ) ) ) |
| 137 |
136
|
itgeq2dv |
⊢ ( 𝜑 → ∫ 𝐴 ( - ( ℑ ‘ 𝐶 ) · ( ℑ ‘ 𝐵 ) ) d 𝑥 = ∫ 𝐴 - ( ( ℑ ‘ 𝐶 ) · ( ℑ ‘ 𝐵 ) ) d 𝑥 ) |
| 138 |
135 137
|
eqtr4d |
⊢ ( 𝜑 → - ∫ 𝐴 ( ( ℑ ‘ 𝐶 ) · ( ℑ ‘ 𝐵 ) ) d 𝑥 = ∫ 𝐴 ( - ( ℑ ‘ 𝐶 ) · ( ℑ ‘ 𝐵 ) ) d 𝑥 ) |
| 139 |
138
|
oveq2d |
⊢ ( 𝜑 → ( ∫ 𝐴 ( ( ℜ ‘ 𝐶 ) · ( ℜ ‘ 𝐵 ) ) d 𝑥 + - ∫ 𝐴 ( ( ℑ ‘ 𝐶 ) · ( ℑ ‘ 𝐵 ) ) d 𝑥 ) = ( ∫ 𝐴 ( ( ℜ ‘ 𝐶 ) · ( ℜ ‘ 𝐵 ) ) d 𝑥 + ∫ 𝐴 ( - ( ℑ ‘ 𝐶 ) · ( ℑ ‘ 𝐵 ) ) d 𝑥 ) ) |
| 140 |
111 115
|
itgcl |
⊢ ( 𝜑 → ∫ 𝐴 ( ( ℑ ‘ 𝐶 ) · ( ℑ ‘ 𝐵 ) ) d 𝑥 ∈ ℂ ) |
| 141 |
29 140
|
negsubd |
⊢ ( 𝜑 → ( ∫ 𝐴 ( ( ℜ ‘ 𝐶 ) · ( ℜ ‘ 𝐵 ) ) d 𝑥 + - ∫ 𝐴 ( ( ℑ ‘ 𝐶 ) · ( ℑ ‘ 𝐵 ) ) d 𝑥 ) = ( ∫ 𝐴 ( ( ℜ ‘ 𝐶 ) · ( ℜ ‘ 𝐵 ) ) d 𝑥 − ∫ 𝐴 ( ( ℑ ‘ 𝐶 ) · ( ℑ ‘ 𝐵 ) ) d 𝑥 ) ) |
| 142 |
139 141
|
eqtr3d |
⊢ ( 𝜑 → ( ∫ 𝐴 ( ( ℜ ‘ 𝐶 ) · ( ℜ ‘ 𝐵 ) ) d 𝑥 + ∫ 𝐴 ( - ( ℑ ‘ 𝐶 ) · ( ℑ ‘ 𝐵 ) ) d 𝑥 ) = ( ∫ 𝐴 ( ( ℜ ‘ 𝐶 ) · ( ℜ ‘ 𝐵 ) ) d 𝑥 − ∫ 𝐴 ( ( ℑ ‘ 𝐶 ) · ( ℑ ‘ 𝐵 ) ) d 𝑥 ) ) |
| 143 |
133 134 142
|
3eqtr4d |
⊢ ( 𝜑 → ∫ 𝐴 ( ℜ ‘ ( 𝐶 · 𝐵 ) ) d 𝑥 = ( ∫ 𝐴 ( ( ℜ ‘ 𝐶 ) · ( ℜ ‘ 𝐵 ) ) d 𝑥 + ∫ 𝐴 ( - ( ℑ ‘ 𝐶 ) · ( ℑ ‘ 𝐵 ) ) d 𝑥 ) ) |
| 144 |
116 10
|
immuld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ℑ ‘ ( 𝐶 · 𝐵 ) ) = ( ( ( ℜ ‘ 𝐶 ) · ( ℑ ‘ 𝐵 ) ) + ( ( ℑ ‘ 𝐶 ) · ( ℜ ‘ 𝐵 ) ) ) ) |
| 145 |
144
|
itgeq2dv |
⊢ ( 𝜑 → ∫ 𝐴 ( ℑ ‘ ( 𝐶 · 𝐵 ) ) d 𝑥 = ∫ 𝐴 ( ( ( ℜ ‘ 𝐶 ) · ( ℑ ‘ 𝐵 ) ) + ( ( ℑ ‘ 𝐶 ) · ( ℜ ‘ 𝐵 ) ) ) d 𝑥 ) |
| 146 |
|
imf |
⊢ ℑ : ℂ ⟶ ℝ |
| 147 |
146
|
a1i |
⊢ ( 𝜑 → ℑ : ℂ ⟶ ℝ ) |
| 148 |
147
|
feqmptd |
⊢ ( 𝜑 → ℑ = ( 𝑘 ∈ ℂ ↦ ( ℑ ‘ 𝑘 ) ) ) |
| 149 |
|
fveq2 |
⊢ ( 𝑘 = ( 𝐶 · 𝐵 ) → ( ℑ ‘ 𝑘 ) = ( ℑ ‘ ( 𝐶 · 𝐵 ) ) ) |
| 150 |
117 118 148 149
|
fmptco |
⊢ ( 𝜑 → ( ℑ ∘ ( 𝑥 ∈ 𝐴 ↦ ( 𝐶 · 𝐵 ) ) ) = ( 𝑥 ∈ 𝐴 ↦ ( ℑ ‘ ( 𝐶 · 𝐵 ) ) ) ) |
| 151 |
144
|
mpteq2dva |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ ( ℑ ‘ ( 𝐶 · 𝐵 ) ) ) = ( 𝑥 ∈ 𝐴 ↦ ( ( ( ℜ ‘ 𝐶 ) · ( ℑ ‘ 𝐵 ) ) + ( ( ℑ ‘ 𝐶 ) · ( ℜ ‘ 𝐵 ) ) ) ) ) |
| 152 |
150 151
|
eqtrd |
⊢ ( 𝜑 → ( ℑ ∘ ( 𝑥 ∈ 𝐴 ↦ ( 𝐶 · 𝐵 ) ) ) = ( 𝑥 ∈ 𝐴 ↦ ( ( ( ℜ ‘ 𝐶 ) · ( ℑ ‘ 𝐵 ) ) + ( ( ℑ ‘ 𝐶 ) · ( ℜ ‘ 𝐵 ) ) ) ) ) |
| 153 |
130
|
simprd |
⊢ ( 𝜑 → ( ℑ ∘ ( 𝑥 ∈ 𝐴 ↦ ( 𝐶 · 𝐵 ) ) ) ∈ MblFn ) |
| 154 |
152 153
|
eqeltrrd |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ ( ( ( ℜ ‘ 𝐶 ) · ( ℑ ‘ 𝐵 ) ) + ( ( ℑ ‘ 𝐶 ) · ( ℜ ‘ 𝐵 ) ) ) ) ∈ MblFn ) |
| 155 |
33 42 60 66 154
|
itgaddnc |
⊢ ( 𝜑 → ∫ 𝐴 ( ( ( ℜ ‘ 𝐶 ) · ( ℑ ‘ 𝐵 ) ) + ( ( ℑ ‘ 𝐶 ) · ( ℜ ‘ 𝐵 ) ) ) d 𝑥 = ( ∫ 𝐴 ( ( ℜ ‘ 𝐶 ) · ( ℑ ‘ 𝐵 ) ) d 𝑥 + ∫ 𝐴 ( ( ℑ ‘ 𝐶 ) · ( ℜ ‘ 𝐵 ) ) d 𝑥 ) ) |
| 156 |
145 155
|
eqtrd |
⊢ ( 𝜑 → ∫ 𝐴 ( ℑ ‘ ( 𝐶 · 𝐵 ) ) d 𝑥 = ( ∫ 𝐴 ( ( ℜ ‘ 𝐶 ) · ( ℑ ‘ 𝐵 ) ) d 𝑥 + ∫ 𝐴 ( ( ℑ ‘ 𝐶 ) · ( ℜ ‘ 𝐵 ) ) d 𝑥 ) ) |
| 157 |
156
|
oveq2d |
⊢ ( 𝜑 → ( i · ∫ 𝐴 ( ℑ ‘ ( 𝐶 · 𝐵 ) ) d 𝑥 ) = ( i · ( ∫ 𝐴 ( ( ℜ ‘ 𝐶 ) · ( ℑ ‘ 𝐵 ) ) d 𝑥 + ∫ 𝐴 ( ( ℑ ‘ 𝐶 ) · ( ℜ ‘ 𝐵 ) ) d 𝑥 ) ) ) |
| 158 |
71 43 67
|
adddid |
⊢ ( 𝜑 → ( i · ( ∫ 𝐴 ( ( ℜ ‘ 𝐶 ) · ( ℑ ‘ 𝐵 ) ) d 𝑥 + ∫ 𝐴 ( ( ℑ ‘ 𝐶 ) · ( ℜ ‘ 𝐵 ) ) d 𝑥 ) ) = ( ( i · ∫ 𝐴 ( ( ℜ ‘ 𝐶 ) · ( ℑ ‘ 𝐵 ) ) d 𝑥 ) + ( i · ∫ 𝐴 ( ( ℑ ‘ 𝐶 ) · ( ℜ ‘ 𝐵 ) ) d 𝑥 ) ) ) |
| 159 |
157 158
|
eqtrd |
⊢ ( 𝜑 → ( i · ∫ 𝐴 ( ℑ ‘ ( 𝐶 · 𝐵 ) ) d 𝑥 ) = ( ( i · ∫ 𝐴 ( ( ℜ ‘ 𝐶 ) · ( ℑ ‘ 𝐵 ) ) d 𝑥 ) + ( i · ∫ 𝐴 ( ( ℑ ‘ 𝐶 ) · ( ℜ ‘ 𝐵 ) ) d 𝑥 ) ) ) |
| 160 |
143 159
|
oveq12d |
⊢ ( 𝜑 → ( ∫ 𝐴 ( ℜ ‘ ( 𝐶 · 𝐵 ) ) d 𝑥 + ( i · ∫ 𝐴 ( ℑ ‘ ( 𝐶 · 𝐵 ) ) d 𝑥 ) ) = ( ( ∫ 𝐴 ( ( ℜ ‘ 𝐶 ) · ( ℜ ‘ 𝐵 ) ) d 𝑥 + ∫ 𝐴 ( - ( ℑ ‘ 𝐶 ) · ( ℑ ‘ 𝐵 ) ) d 𝑥 ) + ( ( i · ∫ 𝐴 ( ( ℜ ‘ 𝐶 ) · ( ℑ ‘ 𝐵 ) ) d 𝑥 ) + ( i · ∫ 𝐴 ( ( ℑ ‘ 𝐶 ) · ( ℜ ‘ 𝐵 ) ) d 𝑥 ) ) ) ) |
| 161 |
70 110 160
|
3eqtr4d |
⊢ ( 𝜑 → ( ( ( ℜ ‘ 𝐶 ) + ( i · ( ℑ ‘ 𝐶 ) ) ) · ∫ 𝐴 𝐵 d 𝑥 ) = ( ∫ 𝐴 ( ℜ ‘ ( 𝐶 · 𝐵 ) ) d 𝑥 + ( i · ∫ 𝐴 ( ℑ ‘ ( 𝐶 · 𝐵 ) ) d 𝑥 ) ) ) |
| 162 |
1
|
replimd |
⊢ ( 𝜑 → 𝐶 = ( ( ℜ ‘ 𝐶 ) + ( i · ( ℑ ‘ 𝐶 ) ) ) ) |
| 163 |
162
|
oveq1d |
⊢ ( 𝜑 → ( 𝐶 · ∫ 𝐴 𝐵 d 𝑥 ) = ( ( ( ℜ ‘ 𝐶 ) + ( i · ( ℑ ‘ 𝐶 ) ) ) · ∫ 𝐴 𝐵 d 𝑥 ) ) |
| 164 |
1 2 3 4
|
iblmulc2nc |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ ( 𝐶 · 𝐵 ) ) ∈ 𝐿1 ) |
| 165 |
117 164
|
itgcnval |
⊢ ( 𝜑 → ∫ 𝐴 ( 𝐶 · 𝐵 ) d 𝑥 = ( ∫ 𝐴 ( ℜ ‘ ( 𝐶 · 𝐵 ) ) d 𝑥 + ( i · ∫ 𝐴 ( ℑ ‘ ( 𝐶 · 𝐵 ) ) d 𝑥 ) ) ) |
| 166 |
161 163 165
|
3eqtr4d |
⊢ ( 𝜑 → ( 𝐶 · ∫ 𝐴 𝐵 d 𝑥 ) = ∫ 𝐴 ( 𝐶 · 𝐵 ) d 𝑥 ) |