| Step |
Hyp |
Ref |
Expression |
| 1 |
|
itgabsnc.1 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ 𝑉 ) |
| 2 |
|
itgabsnc.2 |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ 𝐿1 ) |
| 3 |
|
itgabsnc.m1 |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ ( abs ‘ 𝐵 ) ) ∈ MblFn ) |
| 4 |
|
itgabsnc.m2 |
⊢ ( 𝜑 → ( 𝑦 ∈ 𝐴 ↦ ( ( ∗ ‘ ∫ 𝐴 𝐵 d 𝑥 ) · ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) ) ∈ MblFn ) |
| 5 |
1 2
|
itgcl |
⊢ ( 𝜑 → ∫ 𝐴 𝐵 d 𝑥 ∈ ℂ ) |
| 6 |
5
|
cjcld |
⊢ ( 𝜑 → ( ∗ ‘ ∫ 𝐴 𝐵 d 𝑥 ) ∈ ℂ ) |
| 7 |
|
iblmbf |
⊢ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ 𝐿1 → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ MblFn ) |
| 8 |
2 7
|
syl |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ MblFn ) |
| 9 |
8 1
|
mbfmptcl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ ℂ ) |
| 10 |
9
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐴 𝐵 ∈ ℂ ) |
| 11 |
|
nfv |
⊢ Ⅎ 𝑦 𝐵 ∈ ℂ |
| 12 |
|
nfcsb1v |
⊢ Ⅎ 𝑥 ⦋ 𝑦 / 𝑥 ⦌ 𝐵 |
| 13 |
12
|
nfel1 |
⊢ Ⅎ 𝑥 ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ∈ ℂ |
| 14 |
|
csbeq1a |
⊢ ( 𝑥 = 𝑦 → 𝐵 = ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) |
| 15 |
14
|
eleq1d |
⊢ ( 𝑥 = 𝑦 → ( 𝐵 ∈ ℂ ↔ ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ∈ ℂ ) ) |
| 16 |
11 13 15
|
cbvralw |
⊢ ( ∀ 𝑥 ∈ 𝐴 𝐵 ∈ ℂ ↔ ∀ 𝑦 ∈ 𝐴 ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ∈ ℂ ) |
| 17 |
10 16
|
sylib |
⊢ ( 𝜑 → ∀ 𝑦 ∈ 𝐴 ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ∈ ℂ ) |
| 18 |
17
|
r19.21bi |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ) → ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ∈ ℂ ) |
| 19 |
|
nfcv |
⊢ Ⅎ 𝑦 𝐵 |
| 20 |
19 12 14
|
cbvmpt |
⊢ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) = ( 𝑦 ∈ 𝐴 ↦ ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) |
| 21 |
20 2
|
eqeltrrid |
⊢ ( 𝜑 → ( 𝑦 ∈ 𝐴 ↦ ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) ∈ 𝐿1 ) |
| 22 |
6 18 21 4
|
iblmulc2nc |
⊢ ( 𝜑 → ( 𝑦 ∈ 𝐴 ↦ ( ( ∗ ‘ ∫ 𝐴 𝐵 d 𝑥 ) · ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) ) ∈ 𝐿1 ) |
| 23 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ) → ( ∗ ‘ ∫ 𝐴 𝐵 d 𝑥 ) ∈ ℂ ) |
| 24 |
23 18
|
mulcld |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ) → ( ( ∗ ‘ ∫ 𝐴 𝐵 d 𝑥 ) · ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) ∈ ℂ ) |
| 25 |
24
|
iblcn |
⊢ ( 𝜑 → ( ( 𝑦 ∈ 𝐴 ↦ ( ( ∗ ‘ ∫ 𝐴 𝐵 d 𝑥 ) · ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) ) ∈ 𝐿1 ↔ ( ( 𝑦 ∈ 𝐴 ↦ ( ℜ ‘ ( ( ∗ ‘ ∫ 𝐴 𝐵 d 𝑥 ) · ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) ) ) ∈ 𝐿1 ∧ ( 𝑦 ∈ 𝐴 ↦ ( ℑ ‘ ( ( ∗ ‘ ∫ 𝐴 𝐵 d 𝑥 ) · ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) ) ) ∈ 𝐿1 ) ) ) |
| 26 |
22 25
|
mpbid |
⊢ ( 𝜑 → ( ( 𝑦 ∈ 𝐴 ↦ ( ℜ ‘ ( ( ∗ ‘ ∫ 𝐴 𝐵 d 𝑥 ) · ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) ) ) ∈ 𝐿1 ∧ ( 𝑦 ∈ 𝐴 ↦ ( ℑ ‘ ( ( ∗ ‘ ∫ 𝐴 𝐵 d 𝑥 ) · ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) ) ) ∈ 𝐿1 ) ) |
| 27 |
26
|
simpld |
⊢ ( 𝜑 → ( 𝑦 ∈ 𝐴 ↦ ( ℜ ‘ ( ( ∗ ‘ ∫ 𝐴 𝐵 d 𝑥 ) · ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) ) ) ∈ 𝐿1 ) |
| 28 |
23 18
|
absmuld |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ) → ( abs ‘ ( ( ∗ ‘ ∫ 𝐴 𝐵 d 𝑥 ) · ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) ) = ( ( abs ‘ ( ∗ ‘ ∫ 𝐴 𝐵 d 𝑥 ) ) · ( abs ‘ ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) ) ) |
| 29 |
28
|
mpteq2dva |
⊢ ( 𝜑 → ( 𝑦 ∈ 𝐴 ↦ ( abs ‘ ( ( ∗ ‘ ∫ 𝐴 𝐵 d 𝑥 ) · ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) ) ) = ( 𝑦 ∈ 𝐴 ↦ ( ( abs ‘ ( ∗ ‘ ∫ 𝐴 𝐵 d 𝑥 ) ) · ( abs ‘ ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) ) ) ) |
| 30 |
8 1
|
mbfdm2 |
⊢ ( 𝜑 → 𝐴 ∈ dom vol ) |
| 31 |
23
|
abscld |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ) → ( abs ‘ ( ∗ ‘ ∫ 𝐴 𝐵 d 𝑥 ) ) ∈ ℝ ) |
| 32 |
18
|
abscld |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ) → ( abs ‘ ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) ∈ ℝ ) |
| 33 |
|
fconstmpt |
⊢ ( 𝐴 × { ( abs ‘ ( ∗ ‘ ∫ 𝐴 𝐵 d 𝑥 ) ) } ) = ( 𝑦 ∈ 𝐴 ↦ ( abs ‘ ( ∗ ‘ ∫ 𝐴 𝐵 d 𝑥 ) ) ) |
| 34 |
33
|
a1i |
⊢ ( 𝜑 → ( 𝐴 × { ( abs ‘ ( ∗ ‘ ∫ 𝐴 𝐵 d 𝑥 ) ) } ) = ( 𝑦 ∈ 𝐴 ↦ ( abs ‘ ( ∗ ‘ ∫ 𝐴 𝐵 d 𝑥 ) ) ) ) |
| 35 |
|
nfcv |
⊢ Ⅎ 𝑦 ( abs ‘ 𝐵 ) |
| 36 |
|
nfcv |
⊢ Ⅎ 𝑥 abs |
| 37 |
36 12
|
nffv |
⊢ Ⅎ 𝑥 ( abs ‘ ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) |
| 38 |
14
|
fveq2d |
⊢ ( 𝑥 = 𝑦 → ( abs ‘ 𝐵 ) = ( abs ‘ ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) ) |
| 39 |
35 37 38
|
cbvmpt |
⊢ ( 𝑥 ∈ 𝐴 ↦ ( abs ‘ 𝐵 ) ) = ( 𝑦 ∈ 𝐴 ↦ ( abs ‘ ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) ) |
| 40 |
39
|
a1i |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ ( abs ‘ 𝐵 ) ) = ( 𝑦 ∈ 𝐴 ↦ ( abs ‘ ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) ) ) |
| 41 |
30 31 32 34 40
|
offval2 |
⊢ ( 𝜑 → ( ( 𝐴 × { ( abs ‘ ( ∗ ‘ ∫ 𝐴 𝐵 d 𝑥 ) ) } ) ∘f · ( 𝑥 ∈ 𝐴 ↦ ( abs ‘ 𝐵 ) ) ) = ( 𝑦 ∈ 𝐴 ↦ ( ( abs ‘ ( ∗ ‘ ∫ 𝐴 𝐵 d 𝑥 ) ) · ( abs ‘ ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) ) ) ) |
| 42 |
29 41
|
eqtr4d |
⊢ ( 𝜑 → ( 𝑦 ∈ 𝐴 ↦ ( abs ‘ ( ( ∗ ‘ ∫ 𝐴 𝐵 d 𝑥 ) · ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) ) ) = ( ( 𝐴 × { ( abs ‘ ( ∗ ‘ ∫ 𝐴 𝐵 d 𝑥 ) ) } ) ∘f · ( 𝑥 ∈ 𝐴 ↦ ( abs ‘ 𝐵 ) ) ) ) |
| 43 |
6
|
abscld |
⊢ ( 𝜑 → ( abs ‘ ( ∗ ‘ ∫ 𝐴 𝐵 d 𝑥 ) ) ∈ ℝ ) |
| 44 |
9
|
abscld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( abs ‘ 𝐵 ) ∈ ℝ ) |
| 45 |
44
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( abs ‘ 𝐵 ) ∈ ℂ ) |
| 46 |
45
|
fmpttd |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ ( abs ‘ 𝐵 ) ) : 𝐴 ⟶ ℂ ) |
| 47 |
3 43 46
|
mbfmulc2re |
⊢ ( 𝜑 → ( ( 𝐴 × { ( abs ‘ ( ∗ ‘ ∫ 𝐴 𝐵 d 𝑥 ) ) } ) ∘f · ( 𝑥 ∈ 𝐴 ↦ ( abs ‘ 𝐵 ) ) ) ∈ MblFn ) |
| 48 |
42 47
|
eqeltrd |
⊢ ( 𝜑 → ( 𝑦 ∈ 𝐴 ↦ ( abs ‘ ( ( ∗ ‘ ∫ 𝐴 𝐵 d 𝑥 ) · ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) ) ) ∈ MblFn ) |
| 49 |
24 22 48
|
iblabsnc |
⊢ ( 𝜑 → ( 𝑦 ∈ 𝐴 ↦ ( abs ‘ ( ( ∗ ‘ ∫ 𝐴 𝐵 d 𝑥 ) · ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) ) ) ∈ 𝐿1 ) |
| 50 |
24
|
recld |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ) → ( ℜ ‘ ( ( ∗ ‘ ∫ 𝐴 𝐵 d 𝑥 ) · ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) ) ∈ ℝ ) |
| 51 |
24
|
abscld |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ) → ( abs ‘ ( ( ∗ ‘ ∫ 𝐴 𝐵 d 𝑥 ) · ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) ) ∈ ℝ ) |
| 52 |
24
|
releabsd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ) → ( ℜ ‘ ( ( ∗ ‘ ∫ 𝐴 𝐵 d 𝑥 ) · ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) ) ≤ ( abs ‘ ( ( ∗ ‘ ∫ 𝐴 𝐵 d 𝑥 ) · ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) ) ) |
| 53 |
27 49 50 51 52
|
itgle |
⊢ ( 𝜑 → ∫ 𝐴 ( ℜ ‘ ( ( ∗ ‘ ∫ 𝐴 𝐵 d 𝑥 ) · ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) ) d 𝑦 ≤ ∫ 𝐴 ( abs ‘ ( ( ∗ ‘ ∫ 𝐴 𝐵 d 𝑥 ) · ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) ) d 𝑦 ) |
| 54 |
5
|
abscld |
⊢ ( 𝜑 → ( abs ‘ ∫ 𝐴 𝐵 d 𝑥 ) ∈ ℝ ) |
| 55 |
54
|
recnd |
⊢ ( 𝜑 → ( abs ‘ ∫ 𝐴 𝐵 d 𝑥 ) ∈ ℂ ) |
| 56 |
55
|
sqvald |
⊢ ( 𝜑 → ( ( abs ‘ ∫ 𝐴 𝐵 d 𝑥 ) ↑ 2 ) = ( ( abs ‘ ∫ 𝐴 𝐵 d 𝑥 ) · ( abs ‘ ∫ 𝐴 𝐵 d 𝑥 ) ) ) |
| 57 |
5
|
absvalsqd |
⊢ ( 𝜑 → ( ( abs ‘ ∫ 𝐴 𝐵 d 𝑥 ) ↑ 2 ) = ( ∫ 𝐴 𝐵 d 𝑥 · ( ∗ ‘ ∫ 𝐴 𝐵 d 𝑥 ) ) ) |
| 58 |
5 6
|
mulcomd |
⊢ ( 𝜑 → ( ∫ 𝐴 𝐵 d 𝑥 · ( ∗ ‘ ∫ 𝐴 𝐵 d 𝑥 ) ) = ( ( ∗ ‘ ∫ 𝐴 𝐵 d 𝑥 ) · ∫ 𝐴 𝐵 d 𝑥 ) ) |
| 59 |
14 19 12
|
cbvitg |
⊢ ∫ 𝐴 𝐵 d 𝑥 = ∫ 𝐴 ⦋ 𝑦 / 𝑥 ⦌ 𝐵 d 𝑦 |
| 60 |
59
|
oveq2i |
⊢ ( ( ∗ ‘ ∫ 𝐴 𝐵 d 𝑥 ) · ∫ 𝐴 𝐵 d 𝑥 ) = ( ( ∗ ‘ ∫ 𝐴 𝐵 d 𝑥 ) · ∫ 𝐴 ⦋ 𝑦 / 𝑥 ⦌ 𝐵 d 𝑦 ) |
| 61 |
6 18 21 4
|
itgmulc2nc |
⊢ ( 𝜑 → ( ( ∗ ‘ ∫ 𝐴 𝐵 d 𝑥 ) · ∫ 𝐴 ⦋ 𝑦 / 𝑥 ⦌ 𝐵 d 𝑦 ) = ∫ 𝐴 ( ( ∗ ‘ ∫ 𝐴 𝐵 d 𝑥 ) · ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) d 𝑦 ) |
| 62 |
60 61
|
eqtrid |
⊢ ( 𝜑 → ( ( ∗ ‘ ∫ 𝐴 𝐵 d 𝑥 ) · ∫ 𝐴 𝐵 d 𝑥 ) = ∫ 𝐴 ( ( ∗ ‘ ∫ 𝐴 𝐵 d 𝑥 ) · ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) d 𝑦 ) |
| 63 |
57 58 62
|
3eqtrd |
⊢ ( 𝜑 → ( ( abs ‘ ∫ 𝐴 𝐵 d 𝑥 ) ↑ 2 ) = ∫ 𝐴 ( ( ∗ ‘ ∫ 𝐴 𝐵 d 𝑥 ) · ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) d 𝑦 ) |
| 64 |
63
|
fveq2d |
⊢ ( 𝜑 → ( ℜ ‘ ( ( abs ‘ ∫ 𝐴 𝐵 d 𝑥 ) ↑ 2 ) ) = ( ℜ ‘ ∫ 𝐴 ( ( ∗ ‘ ∫ 𝐴 𝐵 d 𝑥 ) · ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) d 𝑦 ) ) |
| 65 |
54
|
resqcld |
⊢ ( 𝜑 → ( ( abs ‘ ∫ 𝐴 𝐵 d 𝑥 ) ↑ 2 ) ∈ ℝ ) |
| 66 |
65
|
rered |
⊢ ( 𝜑 → ( ℜ ‘ ( ( abs ‘ ∫ 𝐴 𝐵 d 𝑥 ) ↑ 2 ) ) = ( ( abs ‘ ∫ 𝐴 𝐵 d 𝑥 ) ↑ 2 ) ) |
| 67 |
|
ovexd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ) → ( ( ∗ ‘ ∫ 𝐴 𝐵 d 𝑥 ) · ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) ∈ V ) |
| 68 |
67 22
|
itgre |
⊢ ( 𝜑 → ( ℜ ‘ ∫ 𝐴 ( ( ∗ ‘ ∫ 𝐴 𝐵 d 𝑥 ) · ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) d 𝑦 ) = ∫ 𝐴 ( ℜ ‘ ( ( ∗ ‘ ∫ 𝐴 𝐵 d 𝑥 ) · ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) ) d 𝑦 ) |
| 69 |
64 66 68
|
3eqtr3d |
⊢ ( 𝜑 → ( ( abs ‘ ∫ 𝐴 𝐵 d 𝑥 ) ↑ 2 ) = ∫ 𝐴 ( ℜ ‘ ( ( ∗ ‘ ∫ 𝐴 𝐵 d 𝑥 ) · ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) ) d 𝑦 ) |
| 70 |
56 69
|
eqtr3d |
⊢ ( 𝜑 → ( ( abs ‘ ∫ 𝐴 𝐵 d 𝑥 ) · ( abs ‘ ∫ 𝐴 𝐵 d 𝑥 ) ) = ∫ 𝐴 ( ℜ ‘ ( ( ∗ ‘ ∫ 𝐴 𝐵 d 𝑥 ) · ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) ) d 𝑦 ) |
| 71 |
38 35 37
|
cbvitg |
⊢ ∫ 𝐴 ( abs ‘ 𝐵 ) d 𝑥 = ∫ 𝐴 ( abs ‘ ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) d 𝑦 |
| 72 |
71
|
oveq2i |
⊢ ( ( abs ‘ ∫ 𝐴 𝐵 d 𝑥 ) · ∫ 𝐴 ( abs ‘ 𝐵 ) d 𝑥 ) = ( ( abs ‘ ∫ 𝐴 𝐵 d 𝑥 ) · ∫ 𝐴 ( abs ‘ ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) d 𝑦 ) |
| 73 |
1 2 3
|
iblabsnc |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ ( abs ‘ 𝐵 ) ) ∈ 𝐿1 ) |
| 74 |
39 73
|
eqeltrrid |
⊢ ( 𝜑 → ( 𝑦 ∈ 𝐴 ↦ ( abs ‘ ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) ) ∈ 𝐿1 ) |
| 75 |
54
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ) → ( abs ‘ ∫ 𝐴 𝐵 d 𝑥 ) ∈ ℝ ) |
| 76 |
|
fconstmpt |
⊢ ( 𝐴 × { ( abs ‘ ∫ 𝐴 𝐵 d 𝑥 ) } ) = ( 𝑦 ∈ 𝐴 ↦ ( abs ‘ ∫ 𝐴 𝐵 d 𝑥 ) ) |
| 77 |
76
|
a1i |
⊢ ( 𝜑 → ( 𝐴 × { ( abs ‘ ∫ 𝐴 𝐵 d 𝑥 ) } ) = ( 𝑦 ∈ 𝐴 ↦ ( abs ‘ ∫ 𝐴 𝐵 d 𝑥 ) ) ) |
| 78 |
30 75 32 77 40
|
offval2 |
⊢ ( 𝜑 → ( ( 𝐴 × { ( abs ‘ ∫ 𝐴 𝐵 d 𝑥 ) } ) ∘f · ( 𝑥 ∈ 𝐴 ↦ ( abs ‘ 𝐵 ) ) ) = ( 𝑦 ∈ 𝐴 ↦ ( ( abs ‘ ∫ 𝐴 𝐵 d 𝑥 ) · ( abs ‘ ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) ) ) ) |
| 79 |
3 54 46
|
mbfmulc2re |
⊢ ( 𝜑 → ( ( 𝐴 × { ( abs ‘ ∫ 𝐴 𝐵 d 𝑥 ) } ) ∘f · ( 𝑥 ∈ 𝐴 ↦ ( abs ‘ 𝐵 ) ) ) ∈ MblFn ) |
| 80 |
78 79
|
eqeltrrd |
⊢ ( 𝜑 → ( 𝑦 ∈ 𝐴 ↦ ( ( abs ‘ ∫ 𝐴 𝐵 d 𝑥 ) · ( abs ‘ ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) ) ) ∈ MblFn ) |
| 81 |
55 32 74 80
|
itgmulc2nc |
⊢ ( 𝜑 → ( ( abs ‘ ∫ 𝐴 𝐵 d 𝑥 ) · ∫ 𝐴 ( abs ‘ ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) d 𝑦 ) = ∫ 𝐴 ( ( abs ‘ ∫ 𝐴 𝐵 d 𝑥 ) · ( abs ‘ ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) ) d 𝑦 ) |
| 82 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ) → ∫ 𝐴 𝐵 d 𝑥 ∈ ℂ ) |
| 83 |
82
|
abscjd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ) → ( abs ‘ ( ∗ ‘ ∫ 𝐴 𝐵 d 𝑥 ) ) = ( abs ‘ ∫ 𝐴 𝐵 d 𝑥 ) ) |
| 84 |
83
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ) → ( ( abs ‘ ( ∗ ‘ ∫ 𝐴 𝐵 d 𝑥 ) ) · ( abs ‘ ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) ) = ( ( abs ‘ ∫ 𝐴 𝐵 d 𝑥 ) · ( abs ‘ ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) ) ) |
| 85 |
28 84
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ) → ( abs ‘ ( ( ∗ ‘ ∫ 𝐴 𝐵 d 𝑥 ) · ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) ) = ( ( abs ‘ ∫ 𝐴 𝐵 d 𝑥 ) · ( abs ‘ ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) ) ) |
| 86 |
85
|
itgeq2dv |
⊢ ( 𝜑 → ∫ 𝐴 ( abs ‘ ( ( ∗ ‘ ∫ 𝐴 𝐵 d 𝑥 ) · ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) ) d 𝑦 = ∫ 𝐴 ( ( abs ‘ ∫ 𝐴 𝐵 d 𝑥 ) · ( abs ‘ ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) ) d 𝑦 ) |
| 87 |
81 86
|
eqtr4d |
⊢ ( 𝜑 → ( ( abs ‘ ∫ 𝐴 𝐵 d 𝑥 ) · ∫ 𝐴 ( abs ‘ ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) d 𝑦 ) = ∫ 𝐴 ( abs ‘ ( ( ∗ ‘ ∫ 𝐴 𝐵 d 𝑥 ) · ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) ) d 𝑦 ) |
| 88 |
72 87
|
eqtrid |
⊢ ( 𝜑 → ( ( abs ‘ ∫ 𝐴 𝐵 d 𝑥 ) · ∫ 𝐴 ( abs ‘ 𝐵 ) d 𝑥 ) = ∫ 𝐴 ( abs ‘ ( ( ∗ ‘ ∫ 𝐴 𝐵 d 𝑥 ) · ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) ) d 𝑦 ) |
| 89 |
53 70 88
|
3brtr4d |
⊢ ( 𝜑 → ( ( abs ‘ ∫ 𝐴 𝐵 d 𝑥 ) · ( abs ‘ ∫ 𝐴 𝐵 d 𝑥 ) ) ≤ ( ( abs ‘ ∫ 𝐴 𝐵 d 𝑥 ) · ∫ 𝐴 ( abs ‘ 𝐵 ) d 𝑥 ) ) |
| 90 |
89
|
adantr |
⊢ ( ( 𝜑 ∧ 0 < ( abs ‘ ∫ 𝐴 𝐵 d 𝑥 ) ) → ( ( abs ‘ ∫ 𝐴 𝐵 d 𝑥 ) · ( abs ‘ ∫ 𝐴 𝐵 d 𝑥 ) ) ≤ ( ( abs ‘ ∫ 𝐴 𝐵 d 𝑥 ) · ∫ 𝐴 ( abs ‘ 𝐵 ) d 𝑥 ) ) |
| 91 |
54
|
adantr |
⊢ ( ( 𝜑 ∧ 0 < ( abs ‘ ∫ 𝐴 𝐵 d 𝑥 ) ) → ( abs ‘ ∫ 𝐴 𝐵 d 𝑥 ) ∈ ℝ ) |
| 92 |
44 73
|
itgrecl |
⊢ ( 𝜑 → ∫ 𝐴 ( abs ‘ 𝐵 ) d 𝑥 ∈ ℝ ) |
| 93 |
92
|
adantr |
⊢ ( ( 𝜑 ∧ 0 < ( abs ‘ ∫ 𝐴 𝐵 d 𝑥 ) ) → ∫ 𝐴 ( abs ‘ 𝐵 ) d 𝑥 ∈ ℝ ) |
| 94 |
|
simpr |
⊢ ( ( 𝜑 ∧ 0 < ( abs ‘ ∫ 𝐴 𝐵 d 𝑥 ) ) → 0 < ( abs ‘ ∫ 𝐴 𝐵 d 𝑥 ) ) |
| 95 |
|
lemul2 |
⊢ ( ( ( abs ‘ ∫ 𝐴 𝐵 d 𝑥 ) ∈ ℝ ∧ ∫ 𝐴 ( abs ‘ 𝐵 ) d 𝑥 ∈ ℝ ∧ ( ( abs ‘ ∫ 𝐴 𝐵 d 𝑥 ) ∈ ℝ ∧ 0 < ( abs ‘ ∫ 𝐴 𝐵 d 𝑥 ) ) ) → ( ( abs ‘ ∫ 𝐴 𝐵 d 𝑥 ) ≤ ∫ 𝐴 ( abs ‘ 𝐵 ) d 𝑥 ↔ ( ( abs ‘ ∫ 𝐴 𝐵 d 𝑥 ) · ( abs ‘ ∫ 𝐴 𝐵 d 𝑥 ) ) ≤ ( ( abs ‘ ∫ 𝐴 𝐵 d 𝑥 ) · ∫ 𝐴 ( abs ‘ 𝐵 ) d 𝑥 ) ) ) |
| 96 |
91 93 91 94 95
|
syl112anc |
⊢ ( ( 𝜑 ∧ 0 < ( abs ‘ ∫ 𝐴 𝐵 d 𝑥 ) ) → ( ( abs ‘ ∫ 𝐴 𝐵 d 𝑥 ) ≤ ∫ 𝐴 ( abs ‘ 𝐵 ) d 𝑥 ↔ ( ( abs ‘ ∫ 𝐴 𝐵 d 𝑥 ) · ( abs ‘ ∫ 𝐴 𝐵 d 𝑥 ) ) ≤ ( ( abs ‘ ∫ 𝐴 𝐵 d 𝑥 ) · ∫ 𝐴 ( abs ‘ 𝐵 ) d 𝑥 ) ) ) |
| 97 |
90 96
|
mpbird |
⊢ ( ( 𝜑 ∧ 0 < ( abs ‘ ∫ 𝐴 𝐵 d 𝑥 ) ) → ( abs ‘ ∫ 𝐴 𝐵 d 𝑥 ) ≤ ∫ 𝐴 ( abs ‘ 𝐵 ) d 𝑥 ) |
| 98 |
97
|
ex |
⊢ ( 𝜑 → ( 0 < ( abs ‘ ∫ 𝐴 𝐵 d 𝑥 ) → ( abs ‘ ∫ 𝐴 𝐵 d 𝑥 ) ≤ ∫ 𝐴 ( abs ‘ 𝐵 ) d 𝑥 ) ) |
| 99 |
9
|
absge0d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 0 ≤ ( abs ‘ 𝐵 ) ) |
| 100 |
73 44 99
|
itgge0 |
⊢ ( 𝜑 → 0 ≤ ∫ 𝐴 ( abs ‘ 𝐵 ) d 𝑥 ) |
| 101 |
|
breq1 |
⊢ ( 0 = ( abs ‘ ∫ 𝐴 𝐵 d 𝑥 ) → ( 0 ≤ ∫ 𝐴 ( abs ‘ 𝐵 ) d 𝑥 ↔ ( abs ‘ ∫ 𝐴 𝐵 d 𝑥 ) ≤ ∫ 𝐴 ( abs ‘ 𝐵 ) d 𝑥 ) ) |
| 102 |
100 101
|
syl5ibcom |
⊢ ( 𝜑 → ( 0 = ( abs ‘ ∫ 𝐴 𝐵 d 𝑥 ) → ( abs ‘ ∫ 𝐴 𝐵 d 𝑥 ) ≤ ∫ 𝐴 ( abs ‘ 𝐵 ) d 𝑥 ) ) |
| 103 |
5
|
absge0d |
⊢ ( 𝜑 → 0 ≤ ( abs ‘ ∫ 𝐴 𝐵 d 𝑥 ) ) |
| 104 |
|
0re |
⊢ 0 ∈ ℝ |
| 105 |
|
leloe |
⊢ ( ( 0 ∈ ℝ ∧ ( abs ‘ ∫ 𝐴 𝐵 d 𝑥 ) ∈ ℝ ) → ( 0 ≤ ( abs ‘ ∫ 𝐴 𝐵 d 𝑥 ) ↔ ( 0 < ( abs ‘ ∫ 𝐴 𝐵 d 𝑥 ) ∨ 0 = ( abs ‘ ∫ 𝐴 𝐵 d 𝑥 ) ) ) ) |
| 106 |
104 54 105
|
sylancr |
⊢ ( 𝜑 → ( 0 ≤ ( abs ‘ ∫ 𝐴 𝐵 d 𝑥 ) ↔ ( 0 < ( abs ‘ ∫ 𝐴 𝐵 d 𝑥 ) ∨ 0 = ( abs ‘ ∫ 𝐴 𝐵 d 𝑥 ) ) ) ) |
| 107 |
103 106
|
mpbid |
⊢ ( 𝜑 → ( 0 < ( abs ‘ ∫ 𝐴 𝐵 d 𝑥 ) ∨ 0 = ( abs ‘ ∫ 𝐴 𝐵 d 𝑥 ) ) ) |
| 108 |
98 102 107
|
mpjaod |
⊢ ( 𝜑 → ( abs ‘ ∫ 𝐴 𝐵 d 𝑥 ) ≤ ∫ 𝐴 ( abs ‘ 𝐵 ) d 𝑥 ) |