| Step | Hyp | Ref | Expression | 
						
							| 1 |  | itgmulc2nc.1 | ⊢ ( 𝜑  →  𝐶  ∈  ℂ ) | 
						
							| 2 |  | itgmulc2nc.2 | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  𝐵  ∈  𝑉 ) | 
						
							| 3 |  | itgmulc2nc.3 | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝐴  ↦  𝐵 )  ∈  𝐿1 ) | 
						
							| 4 |  | itgmulc2nc.m | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝐴  ↦  ( 𝐶  ·  𝐵 ) )  ∈  MblFn ) | 
						
							| 5 |  | itgmulc2nc.4 | ⊢ ( 𝜑  →  𝐶  ∈  ℝ ) | 
						
							| 6 |  | itgmulc2nc.5 | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  𝐵  ∈  ℝ ) | 
						
							| 7 |  | itgmulc2nc.6 | ⊢ ( 𝜑  →  0  ≤  𝐶 ) | 
						
							| 8 |  | itgmulc2nc.7 | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  0  ≤  𝐵 ) | 
						
							| 9 |  | elrege0 | ⊢ ( 𝐵  ∈  ( 0 [,) +∞ )  ↔  ( 𝐵  ∈  ℝ  ∧  0  ≤  𝐵 ) ) | 
						
							| 10 | 6 8 9 | sylanbrc | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  𝐵  ∈  ( 0 [,) +∞ ) ) | 
						
							| 11 |  | 0e0icopnf | ⊢ 0  ∈  ( 0 [,) +∞ ) | 
						
							| 12 | 11 | a1i | ⊢ ( ( 𝜑  ∧  ¬  𝑥  ∈  𝐴 )  →  0  ∈  ( 0 [,) +∞ ) ) | 
						
							| 13 | 10 12 | ifclda | ⊢ ( 𝜑  →  if ( 𝑥  ∈  𝐴 ,  𝐵 ,  0 )  ∈  ( 0 [,) +∞ ) ) | 
						
							| 14 | 13 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ )  →  if ( 𝑥  ∈  𝐴 ,  𝐵 ,  0 )  ∈  ( 0 [,) +∞ ) ) | 
						
							| 15 | 14 | fmpttd | ⊢ ( 𝜑  →  ( 𝑥  ∈  ℝ  ↦  if ( 𝑥  ∈  𝐴 ,  𝐵 ,  0 ) ) : ℝ ⟶ ( 0 [,) +∞ ) ) | 
						
							| 16 | 6 8 | iblpos | ⊢ ( 𝜑  →  ( ( 𝑥  ∈  𝐴  ↦  𝐵 )  ∈  𝐿1  ↔  ( ( 𝑥  ∈  𝐴  ↦  𝐵 )  ∈  MblFn  ∧  ( ∫2 ‘ ( 𝑥  ∈  ℝ  ↦  if ( 𝑥  ∈  𝐴 ,  𝐵 ,  0 ) ) )  ∈  ℝ ) ) ) | 
						
							| 17 | 3 16 | mpbid | ⊢ ( 𝜑  →  ( ( 𝑥  ∈  𝐴  ↦  𝐵 )  ∈  MblFn  ∧  ( ∫2 ‘ ( 𝑥  ∈  ℝ  ↦  if ( 𝑥  ∈  𝐴 ,  𝐵 ,  0 ) ) )  ∈  ℝ ) ) | 
						
							| 18 | 17 | simprd | ⊢ ( 𝜑  →  ( ∫2 ‘ ( 𝑥  ∈  ℝ  ↦  if ( 𝑥  ∈  𝐴 ,  𝐵 ,  0 ) ) )  ∈  ℝ ) | 
						
							| 19 |  | elrege0 | ⊢ ( 𝐶  ∈  ( 0 [,) +∞ )  ↔  ( 𝐶  ∈  ℝ  ∧  0  ≤  𝐶 ) ) | 
						
							| 20 | 5 7 19 | sylanbrc | ⊢ ( 𝜑  →  𝐶  ∈  ( 0 [,) +∞ ) ) | 
						
							| 21 | 15 18 20 | itg2mulc | ⊢ ( 𝜑  →  ( ∫2 ‘ ( ( ℝ  ×  { 𝐶 } )  ∘f   ·  ( 𝑥  ∈  ℝ  ↦  if ( 𝑥  ∈  𝐴 ,  𝐵 ,  0 ) ) ) )  =  ( 𝐶  ·  ( ∫2 ‘ ( 𝑥  ∈  ℝ  ↦  if ( 𝑥  ∈  𝐴 ,  𝐵 ,  0 ) ) ) ) ) | 
						
							| 22 |  | reex | ⊢ ℝ  ∈  V | 
						
							| 23 | 22 | a1i | ⊢ ( 𝜑  →  ℝ  ∈  V ) | 
						
							| 24 | 1 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ )  →  𝐶  ∈  ℂ ) | 
						
							| 25 |  | fconstmpt | ⊢ ( ℝ  ×  { 𝐶 } )  =  ( 𝑥  ∈  ℝ  ↦  𝐶 ) | 
						
							| 26 | 25 | a1i | ⊢ ( 𝜑  →  ( ℝ  ×  { 𝐶 } )  =  ( 𝑥  ∈  ℝ  ↦  𝐶 ) ) | 
						
							| 27 |  | eqidd | ⊢ ( 𝜑  →  ( 𝑥  ∈  ℝ  ↦  if ( 𝑥  ∈  𝐴 ,  𝐵 ,  0 ) )  =  ( 𝑥  ∈  ℝ  ↦  if ( 𝑥  ∈  𝐴 ,  𝐵 ,  0 ) ) ) | 
						
							| 28 | 23 24 14 26 27 | offval2 | ⊢ ( 𝜑  →  ( ( ℝ  ×  { 𝐶 } )  ∘f   ·  ( 𝑥  ∈  ℝ  ↦  if ( 𝑥  ∈  𝐴 ,  𝐵 ,  0 ) ) )  =  ( 𝑥  ∈  ℝ  ↦  ( 𝐶  ·  if ( 𝑥  ∈  𝐴 ,  𝐵 ,  0 ) ) ) ) | 
						
							| 29 |  | ovif2 | ⊢ ( 𝐶  ·  if ( 𝑥  ∈  𝐴 ,  𝐵 ,  0 ) )  =  if ( 𝑥  ∈  𝐴 ,  ( 𝐶  ·  𝐵 ) ,  ( 𝐶  ·  0 ) ) | 
						
							| 30 | 1 | mul01d | ⊢ ( 𝜑  →  ( 𝐶  ·  0 )  =  0 ) | 
						
							| 31 | 30 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ )  →  ( 𝐶  ·  0 )  =  0 ) | 
						
							| 32 | 31 | ifeq2d | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ )  →  if ( 𝑥  ∈  𝐴 ,  ( 𝐶  ·  𝐵 ) ,  ( 𝐶  ·  0 ) )  =  if ( 𝑥  ∈  𝐴 ,  ( 𝐶  ·  𝐵 ) ,  0 ) ) | 
						
							| 33 | 29 32 | eqtrid | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ )  →  ( 𝐶  ·  if ( 𝑥  ∈  𝐴 ,  𝐵 ,  0 ) )  =  if ( 𝑥  ∈  𝐴 ,  ( 𝐶  ·  𝐵 ) ,  0 ) ) | 
						
							| 34 | 33 | mpteq2dva | ⊢ ( 𝜑  →  ( 𝑥  ∈  ℝ  ↦  ( 𝐶  ·  if ( 𝑥  ∈  𝐴 ,  𝐵 ,  0 ) ) )  =  ( 𝑥  ∈  ℝ  ↦  if ( 𝑥  ∈  𝐴 ,  ( 𝐶  ·  𝐵 ) ,  0 ) ) ) | 
						
							| 35 | 28 34 | eqtrd | ⊢ ( 𝜑  →  ( ( ℝ  ×  { 𝐶 } )  ∘f   ·  ( 𝑥  ∈  ℝ  ↦  if ( 𝑥  ∈  𝐴 ,  𝐵 ,  0 ) ) )  =  ( 𝑥  ∈  ℝ  ↦  if ( 𝑥  ∈  𝐴 ,  ( 𝐶  ·  𝐵 ) ,  0 ) ) ) | 
						
							| 36 | 35 | fveq2d | ⊢ ( 𝜑  →  ( ∫2 ‘ ( ( ℝ  ×  { 𝐶 } )  ∘f   ·  ( 𝑥  ∈  ℝ  ↦  if ( 𝑥  ∈  𝐴 ,  𝐵 ,  0 ) ) ) )  =  ( ∫2 ‘ ( 𝑥  ∈  ℝ  ↦  if ( 𝑥  ∈  𝐴 ,  ( 𝐶  ·  𝐵 ) ,  0 ) ) ) ) | 
						
							| 37 | 21 36 | eqtr3d | ⊢ ( 𝜑  →  ( 𝐶  ·  ( ∫2 ‘ ( 𝑥  ∈  ℝ  ↦  if ( 𝑥  ∈  𝐴 ,  𝐵 ,  0 ) ) ) )  =  ( ∫2 ‘ ( 𝑥  ∈  ℝ  ↦  if ( 𝑥  ∈  𝐴 ,  ( 𝐶  ·  𝐵 ) ,  0 ) ) ) ) | 
						
							| 38 | 6 3 8 | itgposval | ⊢ ( 𝜑  →  ∫ 𝐴 𝐵  d 𝑥  =  ( ∫2 ‘ ( 𝑥  ∈  ℝ  ↦  if ( 𝑥  ∈  𝐴 ,  𝐵 ,  0 ) ) ) ) | 
						
							| 39 | 38 | oveq2d | ⊢ ( 𝜑  →  ( 𝐶  ·  ∫ 𝐴 𝐵  d 𝑥 )  =  ( 𝐶  ·  ( ∫2 ‘ ( 𝑥  ∈  ℝ  ↦  if ( 𝑥  ∈  𝐴 ,  𝐵 ,  0 ) ) ) ) ) | 
						
							| 40 | 5 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  𝐶  ∈  ℝ ) | 
						
							| 41 | 40 6 | remulcld | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  ( 𝐶  ·  𝐵 )  ∈  ℝ ) | 
						
							| 42 | 1 2 3 4 | iblmulc2nc | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝐴  ↦  ( 𝐶  ·  𝐵 ) )  ∈  𝐿1 ) | 
						
							| 43 | 7 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  0  ≤  𝐶 ) | 
						
							| 44 | 40 6 43 8 | mulge0d | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  0  ≤  ( 𝐶  ·  𝐵 ) ) | 
						
							| 45 | 41 42 44 | itgposval | ⊢ ( 𝜑  →  ∫ 𝐴 ( 𝐶  ·  𝐵 )  d 𝑥  =  ( ∫2 ‘ ( 𝑥  ∈  ℝ  ↦  if ( 𝑥  ∈  𝐴 ,  ( 𝐶  ·  𝐵 ) ,  0 ) ) ) ) | 
						
							| 46 | 37 39 45 | 3eqtr4d | ⊢ ( 𝜑  →  ( 𝐶  ·  ∫ 𝐴 𝐵  d 𝑥 )  =  ∫ 𝐴 ( 𝐶  ·  𝐵 )  d 𝑥 ) |