Step |
Hyp |
Ref |
Expression |
1 |
|
limsupbnd.1 |
|- ( ph -> B C_ RR ) |
2 |
|
limsupbnd.2 |
|- ( ph -> F : B --> RR* ) |
3 |
|
limsupbnd.3 |
|- ( ph -> A e. RR* ) |
4 |
|
limsupbnd1.4 |
|- ( ph -> E. k e. RR A. j e. B ( k <_ j -> ( F ` j ) <_ A ) ) |
5 |
1
|
adantr |
|- ( ( ph /\ k e. RR ) -> B C_ RR ) |
6 |
2
|
adantr |
|- ( ( ph /\ k e. RR ) -> F : B --> RR* ) |
7 |
|
simpr |
|- ( ( ph /\ k e. RR ) -> k e. RR ) |
8 |
3
|
adantr |
|- ( ( ph /\ k e. RR ) -> A e. RR* ) |
9 |
|
eqid |
|- ( n e. RR |-> sup ( ( ( F " ( n [,) +oo ) ) i^i RR* ) , RR* , < ) ) = ( n e. RR |-> sup ( ( ( F " ( n [,) +oo ) ) i^i RR* ) , RR* , < ) ) |
10 |
9
|
limsupgle |
|- ( ( ( B C_ RR /\ F : B --> RR* ) /\ k e. RR /\ A e. RR* ) -> ( ( ( n e. RR |-> sup ( ( ( F " ( n [,) +oo ) ) i^i RR* ) , RR* , < ) ) ` k ) <_ A <-> A. j e. B ( k <_ j -> ( F ` j ) <_ A ) ) ) |
11 |
5 6 7 8 10
|
syl211anc |
|- ( ( ph /\ k e. RR ) -> ( ( ( n e. RR |-> sup ( ( ( F " ( n [,) +oo ) ) i^i RR* ) , RR* , < ) ) ` k ) <_ A <-> A. j e. B ( k <_ j -> ( F ` j ) <_ A ) ) ) |
12 |
|
reex |
|- RR e. _V |
13 |
12
|
ssex |
|- ( B C_ RR -> B e. _V ) |
14 |
1 13
|
syl |
|- ( ph -> B e. _V ) |
15 |
|
xrex |
|- RR* e. _V |
16 |
15
|
a1i |
|- ( ph -> RR* e. _V ) |
17 |
|
fex2 |
|- ( ( F : B --> RR* /\ B e. _V /\ RR* e. _V ) -> F e. _V ) |
18 |
2 14 16 17
|
syl3anc |
|- ( ph -> F e. _V ) |
19 |
|
limsupcl |
|- ( F e. _V -> ( limsup ` F ) e. RR* ) |
20 |
18 19
|
syl |
|- ( ph -> ( limsup ` F ) e. RR* ) |
21 |
20
|
xrleidd |
|- ( ph -> ( limsup ` F ) <_ ( limsup ` F ) ) |
22 |
9
|
limsuple |
|- ( ( B C_ RR /\ F : B --> RR* /\ ( limsup ` F ) e. RR* ) -> ( ( limsup ` F ) <_ ( limsup ` F ) <-> A. k e. RR ( limsup ` F ) <_ ( ( n e. RR |-> sup ( ( ( F " ( n [,) +oo ) ) i^i RR* ) , RR* , < ) ) ` k ) ) ) |
23 |
1 2 20 22
|
syl3anc |
|- ( ph -> ( ( limsup ` F ) <_ ( limsup ` F ) <-> A. k e. RR ( limsup ` F ) <_ ( ( n e. RR |-> sup ( ( ( F " ( n [,) +oo ) ) i^i RR* ) , RR* , < ) ) ` k ) ) ) |
24 |
21 23
|
mpbid |
|- ( ph -> A. k e. RR ( limsup ` F ) <_ ( ( n e. RR |-> sup ( ( ( F " ( n [,) +oo ) ) i^i RR* ) , RR* , < ) ) ` k ) ) |
25 |
24
|
r19.21bi |
|- ( ( ph /\ k e. RR ) -> ( limsup ` F ) <_ ( ( n e. RR |-> sup ( ( ( F " ( n [,) +oo ) ) i^i RR* ) , RR* , < ) ) ` k ) ) |
26 |
20
|
adantr |
|- ( ( ph /\ k e. RR ) -> ( limsup ` F ) e. RR* ) |
27 |
9
|
limsupgf |
|- ( n e. RR |-> sup ( ( ( F " ( n [,) +oo ) ) i^i RR* ) , RR* , < ) ) : RR --> RR* |
28 |
27
|
a1i |
|- ( ph -> ( n e. RR |-> sup ( ( ( F " ( n [,) +oo ) ) i^i RR* ) , RR* , < ) ) : RR --> RR* ) |
29 |
28
|
ffvelrnda |
|- ( ( ph /\ k e. RR ) -> ( ( n e. RR |-> sup ( ( ( F " ( n [,) +oo ) ) i^i RR* ) , RR* , < ) ) ` k ) e. RR* ) |
30 |
|
xrletr |
|- ( ( ( limsup ` F ) e. RR* /\ ( ( n e. RR |-> sup ( ( ( F " ( n [,) +oo ) ) i^i RR* ) , RR* , < ) ) ` k ) e. RR* /\ A e. RR* ) -> ( ( ( limsup ` F ) <_ ( ( n e. RR |-> sup ( ( ( F " ( n [,) +oo ) ) i^i RR* ) , RR* , < ) ) ` k ) /\ ( ( n e. RR |-> sup ( ( ( F " ( n [,) +oo ) ) i^i RR* ) , RR* , < ) ) ` k ) <_ A ) -> ( limsup ` F ) <_ A ) ) |
31 |
26 29 8 30
|
syl3anc |
|- ( ( ph /\ k e. RR ) -> ( ( ( limsup ` F ) <_ ( ( n e. RR |-> sup ( ( ( F " ( n [,) +oo ) ) i^i RR* ) , RR* , < ) ) ` k ) /\ ( ( n e. RR |-> sup ( ( ( F " ( n [,) +oo ) ) i^i RR* ) , RR* , < ) ) ` k ) <_ A ) -> ( limsup ` F ) <_ A ) ) |
32 |
25 31
|
mpand |
|- ( ( ph /\ k e. RR ) -> ( ( ( n e. RR |-> sup ( ( ( F " ( n [,) +oo ) ) i^i RR* ) , RR* , < ) ) ` k ) <_ A -> ( limsup ` F ) <_ A ) ) |
33 |
11 32
|
sylbird |
|- ( ( ph /\ k e. RR ) -> ( A. j e. B ( k <_ j -> ( F ` j ) <_ A ) -> ( limsup ` F ) <_ A ) ) |
34 |
33
|
rexlimdva |
|- ( ph -> ( E. k e. RR A. j e. B ( k <_ j -> ( F ` j ) <_ A ) -> ( limsup ` F ) <_ A ) ) |
35 |
4 34
|
mpd |
|- ( ph -> ( limsup ` F ) <_ A ) |