| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lnopunilem.1 |
|- T e. LinOp |
| 2 |
|
lnopunilem.2 |
|- A. x e. ~H ( normh ` ( T ` x ) ) = ( normh ` x ) |
| 3 |
|
lnopunilem.3 |
|- A e. ~H |
| 4 |
|
lnopunilem.4 |
|- B e. ~H |
| 5 |
|
lnopunilem1.5 |
|- C e. CC |
| 6 |
1
|
lnopfi |
|- T : ~H --> ~H |
| 7 |
6
|
ffvelcdmi |
|- ( A e. ~H -> ( T ` A ) e. ~H ) |
| 8 |
3 7
|
ax-mp |
|- ( T ` A ) e. ~H |
| 9 |
6
|
ffvelcdmi |
|- ( B e. ~H -> ( T ` B ) e. ~H ) |
| 10 |
4 9
|
ax-mp |
|- ( T ` B ) e. ~H |
| 11 |
8 10
|
hicli |
|- ( ( T ` A ) .ih ( T ` B ) ) e. CC |
| 12 |
5 11
|
mulcli |
|- ( C x. ( ( T ` A ) .ih ( T ` B ) ) ) e. CC |
| 13 |
|
reval |
|- ( ( C x. ( ( T ` A ) .ih ( T ` B ) ) ) e. CC -> ( Re ` ( C x. ( ( T ` A ) .ih ( T ` B ) ) ) ) = ( ( ( C x. ( ( T ` A ) .ih ( T ` B ) ) ) + ( * ` ( C x. ( ( T ` A ) .ih ( T ` B ) ) ) ) ) / 2 ) ) |
| 14 |
12 13
|
ax-mp |
|- ( Re ` ( C x. ( ( T ` A ) .ih ( T ` B ) ) ) ) = ( ( ( C x. ( ( T ` A ) .ih ( T ` B ) ) ) + ( * ` ( C x. ( ( T ` A ) .ih ( T ` B ) ) ) ) ) / 2 ) |
| 15 |
3 4
|
hicli |
|- ( A .ih B ) e. CC |
| 16 |
5 15
|
mulcli |
|- ( C x. ( A .ih B ) ) e. CC |
| 17 |
|
reval |
|- ( ( C x. ( A .ih B ) ) e. CC -> ( Re ` ( C x. ( A .ih B ) ) ) = ( ( ( C x. ( A .ih B ) ) + ( * ` ( C x. ( A .ih B ) ) ) ) / 2 ) ) |
| 18 |
16 17
|
ax-mp |
|- ( Re ` ( C x. ( A .ih B ) ) ) = ( ( ( C x. ( A .ih B ) ) + ( * ` ( C x. ( A .ih B ) ) ) ) / 2 ) |
| 19 |
|
2fveq3 |
|- ( x = y -> ( normh ` ( T ` x ) ) = ( normh ` ( T ` y ) ) ) |
| 20 |
|
fveq2 |
|- ( x = y -> ( normh ` x ) = ( normh ` y ) ) |
| 21 |
19 20
|
eqeq12d |
|- ( x = y -> ( ( normh ` ( T ` x ) ) = ( normh ` x ) <-> ( normh ` ( T ` y ) ) = ( normh ` y ) ) ) |
| 22 |
21
|
cbvralvw |
|- ( A. x e. ~H ( normh ` ( T ` x ) ) = ( normh ` x ) <-> A. y e. ~H ( normh ` ( T ` y ) ) = ( normh ` y ) ) |
| 23 |
2 22
|
mpbi |
|- A. y e. ~H ( normh ` ( T ` y ) ) = ( normh ` y ) |
| 24 |
|
oveq1 |
|- ( ( normh ` ( T ` y ) ) = ( normh ` y ) -> ( ( normh ` ( T ` y ) ) ^ 2 ) = ( ( normh ` y ) ^ 2 ) ) |
| 25 |
6
|
ffvelcdmi |
|- ( y e. ~H -> ( T ` y ) e. ~H ) |
| 26 |
|
normsq |
|- ( ( T ` y ) e. ~H -> ( ( normh ` ( T ` y ) ) ^ 2 ) = ( ( T ` y ) .ih ( T ` y ) ) ) |
| 27 |
25 26
|
syl |
|- ( y e. ~H -> ( ( normh ` ( T ` y ) ) ^ 2 ) = ( ( T ` y ) .ih ( T ` y ) ) ) |
| 28 |
|
normsq |
|- ( y e. ~H -> ( ( normh ` y ) ^ 2 ) = ( y .ih y ) ) |
| 29 |
27 28
|
eqeq12d |
|- ( y e. ~H -> ( ( ( normh ` ( T ` y ) ) ^ 2 ) = ( ( normh ` y ) ^ 2 ) <-> ( ( T ` y ) .ih ( T ` y ) ) = ( y .ih y ) ) ) |
| 30 |
24 29
|
imbitrid |
|- ( y e. ~H -> ( ( normh ` ( T ` y ) ) = ( normh ` y ) -> ( ( T ` y ) .ih ( T ` y ) ) = ( y .ih y ) ) ) |
| 31 |
30
|
ralimia |
|- ( A. y e. ~H ( normh ` ( T ` y ) ) = ( normh ` y ) -> A. y e. ~H ( ( T ` y ) .ih ( T ` y ) ) = ( y .ih y ) ) |
| 32 |
23 31
|
ax-mp |
|- A. y e. ~H ( ( T ` y ) .ih ( T ` y ) ) = ( y .ih y ) |
| 33 |
|
fveq2 |
|- ( y = A -> ( T ` y ) = ( T ` A ) ) |
| 34 |
33 33
|
oveq12d |
|- ( y = A -> ( ( T ` y ) .ih ( T ` y ) ) = ( ( T ` A ) .ih ( T ` A ) ) ) |
| 35 |
|
id |
|- ( y = A -> y = A ) |
| 36 |
35 35
|
oveq12d |
|- ( y = A -> ( y .ih y ) = ( A .ih A ) ) |
| 37 |
34 36
|
eqeq12d |
|- ( y = A -> ( ( ( T ` y ) .ih ( T ` y ) ) = ( y .ih y ) <-> ( ( T ` A ) .ih ( T ` A ) ) = ( A .ih A ) ) ) |
| 38 |
37
|
rspcv |
|- ( A e. ~H -> ( A. y e. ~H ( ( T ` y ) .ih ( T ` y ) ) = ( y .ih y ) -> ( ( T ` A ) .ih ( T ` A ) ) = ( A .ih A ) ) ) |
| 39 |
3 32 38
|
mp2 |
|- ( ( T ` A ) .ih ( T ` A ) ) = ( A .ih A ) |
| 40 |
39
|
oveq2i |
|- ( ( * ` C ) x. ( ( T ` A ) .ih ( T ` A ) ) ) = ( ( * ` C ) x. ( A .ih A ) ) |
| 41 |
40
|
oveq2i |
|- ( C x. ( ( * ` C ) x. ( ( T ` A ) .ih ( T ` A ) ) ) ) = ( C x. ( ( * ` C ) x. ( A .ih A ) ) ) |
| 42 |
|
fveq2 |
|- ( y = B -> ( T ` y ) = ( T ` B ) ) |
| 43 |
42 42
|
oveq12d |
|- ( y = B -> ( ( T ` y ) .ih ( T ` y ) ) = ( ( T ` B ) .ih ( T ` B ) ) ) |
| 44 |
|
id |
|- ( y = B -> y = B ) |
| 45 |
44 44
|
oveq12d |
|- ( y = B -> ( y .ih y ) = ( B .ih B ) ) |
| 46 |
43 45
|
eqeq12d |
|- ( y = B -> ( ( ( T ` y ) .ih ( T ` y ) ) = ( y .ih y ) <-> ( ( T ` B ) .ih ( T ` B ) ) = ( B .ih B ) ) ) |
| 47 |
46
|
rspcv |
|- ( B e. ~H -> ( A. y e. ~H ( ( T ` y ) .ih ( T ` y ) ) = ( y .ih y ) -> ( ( T ` B ) .ih ( T ` B ) ) = ( B .ih B ) ) ) |
| 48 |
4 32 47
|
mp2 |
|- ( ( T ` B ) .ih ( T ` B ) ) = ( B .ih B ) |
| 49 |
41 48
|
oveq12i |
|- ( ( C x. ( ( * ` C ) x. ( ( T ` A ) .ih ( T ` A ) ) ) ) + ( ( T ` B ) .ih ( T ` B ) ) ) = ( ( C x. ( ( * ` C ) x. ( A .ih A ) ) ) + ( B .ih B ) ) |
| 50 |
49
|
oveq1i |
|- ( ( ( C x. ( ( * ` C ) x. ( ( T ` A ) .ih ( T ` A ) ) ) ) + ( ( T ` B ) .ih ( T ` B ) ) ) + ( ( C x. ( ( T ` A ) .ih ( T ` B ) ) ) + ( * ` ( C x. ( ( T ` A ) .ih ( T ` B ) ) ) ) ) ) = ( ( ( C x. ( ( * ` C ) x. ( A .ih A ) ) ) + ( B .ih B ) ) + ( ( C x. ( ( T ` A ) .ih ( T ` B ) ) ) + ( * ` ( C x. ( ( T ` A ) .ih ( T ` B ) ) ) ) ) ) |
| 51 |
5
|
cjcli |
|- ( * ` C ) e. CC |
| 52 |
8 8
|
hicli |
|- ( ( T ` A ) .ih ( T ` A ) ) e. CC |
| 53 |
51 52
|
mulcli |
|- ( ( * ` C ) x. ( ( T ` A ) .ih ( T ` A ) ) ) e. CC |
| 54 |
5 53
|
mulcli |
|- ( C x. ( ( * ` C ) x. ( ( T ` A ) .ih ( T ` A ) ) ) ) e. CC |
| 55 |
10 10
|
hicli |
|- ( ( T ` B ) .ih ( T ` B ) ) e. CC |
| 56 |
12
|
cjcli |
|- ( * ` ( C x. ( ( T ` A ) .ih ( T ` B ) ) ) ) e. CC |
| 57 |
54 55 12 56
|
add42i |
|- ( ( ( C x. ( ( * ` C ) x. ( ( T ` A ) .ih ( T ` A ) ) ) ) + ( ( T ` B ) .ih ( T ` B ) ) ) + ( ( C x. ( ( T ` A ) .ih ( T ` B ) ) ) + ( * ` ( C x. ( ( T ` A ) .ih ( T ` B ) ) ) ) ) ) = ( ( ( C x. ( ( * ` C ) x. ( ( T ` A ) .ih ( T ` A ) ) ) ) + ( C x. ( ( T ` A ) .ih ( T ` B ) ) ) ) + ( ( * ` ( C x. ( ( T ` A ) .ih ( T ` B ) ) ) ) + ( ( T ` B ) .ih ( T ` B ) ) ) ) |
| 58 |
3 3
|
hicli |
|- ( A .ih A ) e. CC |
| 59 |
51 58
|
mulcli |
|- ( ( * ` C ) x. ( A .ih A ) ) e. CC |
| 60 |
5 59
|
mulcli |
|- ( C x. ( ( * ` C ) x. ( A .ih A ) ) ) e. CC |
| 61 |
4 4
|
hicli |
|- ( B .ih B ) e. CC |
| 62 |
16
|
cjcli |
|- ( * ` ( C x. ( A .ih B ) ) ) e. CC |
| 63 |
60 61 16 62
|
add42i |
|- ( ( ( C x. ( ( * ` C ) x. ( A .ih A ) ) ) + ( B .ih B ) ) + ( ( C x. ( A .ih B ) ) + ( * ` ( C x. ( A .ih B ) ) ) ) ) = ( ( ( C x. ( ( * ` C ) x. ( A .ih A ) ) ) + ( C x. ( A .ih B ) ) ) + ( ( * ` ( C x. ( A .ih B ) ) ) + ( B .ih B ) ) ) |
| 64 |
5 3
|
hvmulcli |
|- ( C .h A ) e. ~H |
| 65 |
64 4
|
hvaddcli |
|- ( ( C .h A ) +h B ) e. ~H |
| 66 |
|
fveq2 |
|- ( y = ( ( C .h A ) +h B ) -> ( T ` y ) = ( T ` ( ( C .h A ) +h B ) ) ) |
| 67 |
66 66
|
oveq12d |
|- ( y = ( ( C .h A ) +h B ) -> ( ( T ` y ) .ih ( T ` y ) ) = ( ( T ` ( ( C .h A ) +h B ) ) .ih ( T ` ( ( C .h A ) +h B ) ) ) ) |
| 68 |
|
id |
|- ( y = ( ( C .h A ) +h B ) -> y = ( ( C .h A ) +h B ) ) |
| 69 |
68 68
|
oveq12d |
|- ( y = ( ( C .h A ) +h B ) -> ( y .ih y ) = ( ( ( C .h A ) +h B ) .ih ( ( C .h A ) +h B ) ) ) |
| 70 |
67 69
|
eqeq12d |
|- ( y = ( ( C .h A ) +h B ) -> ( ( ( T ` y ) .ih ( T ` y ) ) = ( y .ih y ) <-> ( ( T ` ( ( C .h A ) +h B ) ) .ih ( T ` ( ( C .h A ) +h B ) ) ) = ( ( ( C .h A ) +h B ) .ih ( ( C .h A ) +h B ) ) ) ) |
| 71 |
70
|
rspcv |
|- ( ( ( C .h A ) +h B ) e. ~H -> ( A. y e. ~H ( ( T ` y ) .ih ( T ` y ) ) = ( y .ih y ) -> ( ( T ` ( ( C .h A ) +h B ) ) .ih ( T ` ( ( C .h A ) +h B ) ) ) = ( ( ( C .h A ) +h B ) .ih ( ( C .h A ) +h B ) ) ) ) |
| 72 |
65 32 71
|
mp2 |
|- ( ( T ` ( ( C .h A ) +h B ) ) .ih ( T ` ( ( C .h A ) +h B ) ) ) = ( ( ( C .h A ) +h B ) .ih ( ( C .h A ) +h B ) ) |
| 73 |
|
ax-his2 |
|- ( ( ( C .h A ) e. ~H /\ B e. ~H /\ ( ( C .h A ) +h B ) e. ~H ) -> ( ( ( C .h A ) +h B ) .ih ( ( C .h A ) +h B ) ) = ( ( ( C .h A ) .ih ( ( C .h A ) +h B ) ) + ( B .ih ( ( C .h A ) +h B ) ) ) ) |
| 74 |
64 4 65 73
|
mp3an |
|- ( ( ( C .h A ) +h B ) .ih ( ( C .h A ) +h B ) ) = ( ( ( C .h A ) .ih ( ( C .h A ) +h B ) ) + ( B .ih ( ( C .h A ) +h B ) ) ) |
| 75 |
|
ax-his3 |
|- ( ( C e. CC /\ A e. ~H /\ ( ( C .h A ) +h B ) e. ~H ) -> ( ( C .h A ) .ih ( ( C .h A ) +h B ) ) = ( C x. ( A .ih ( ( C .h A ) +h B ) ) ) ) |
| 76 |
5 3 65 75
|
mp3an |
|- ( ( C .h A ) .ih ( ( C .h A ) +h B ) ) = ( C x. ( A .ih ( ( C .h A ) +h B ) ) ) |
| 77 |
|
his7 |
|- ( ( A e. ~H /\ ( C .h A ) e. ~H /\ B e. ~H ) -> ( A .ih ( ( C .h A ) +h B ) ) = ( ( A .ih ( C .h A ) ) + ( A .ih B ) ) ) |
| 78 |
3 64 4 77
|
mp3an |
|- ( A .ih ( ( C .h A ) +h B ) ) = ( ( A .ih ( C .h A ) ) + ( A .ih B ) ) |
| 79 |
|
his5 |
|- ( ( C e. CC /\ A e. ~H /\ A e. ~H ) -> ( A .ih ( C .h A ) ) = ( ( * ` C ) x. ( A .ih A ) ) ) |
| 80 |
5 3 3 79
|
mp3an |
|- ( A .ih ( C .h A ) ) = ( ( * ` C ) x. ( A .ih A ) ) |
| 81 |
80
|
oveq1i |
|- ( ( A .ih ( C .h A ) ) + ( A .ih B ) ) = ( ( ( * ` C ) x. ( A .ih A ) ) + ( A .ih B ) ) |
| 82 |
78 81
|
eqtri |
|- ( A .ih ( ( C .h A ) +h B ) ) = ( ( ( * ` C ) x. ( A .ih A ) ) + ( A .ih B ) ) |
| 83 |
82
|
oveq2i |
|- ( C x. ( A .ih ( ( C .h A ) +h B ) ) ) = ( C x. ( ( ( * ` C ) x. ( A .ih A ) ) + ( A .ih B ) ) ) |
| 84 |
5 59 15
|
adddii |
|- ( C x. ( ( ( * ` C ) x. ( A .ih A ) ) + ( A .ih B ) ) ) = ( ( C x. ( ( * ` C ) x. ( A .ih A ) ) ) + ( C x. ( A .ih B ) ) ) |
| 85 |
76 83 84
|
3eqtri |
|- ( ( C .h A ) .ih ( ( C .h A ) +h B ) ) = ( ( C x. ( ( * ` C ) x. ( A .ih A ) ) ) + ( C x. ( A .ih B ) ) ) |
| 86 |
|
his7 |
|- ( ( B e. ~H /\ ( C .h A ) e. ~H /\ B e. ~H ) -> ( B .ih ( ( C .h A ) +h B ) ) = ( ( B .ih ( C .h A ) ) + ( B .ih B ) ) ) |
| 87 |
4 64 4 86
|
mp3an |
|- ( B .ih ( ( C .h A ) +h B ) ) = ( ( B .ih ( C .h A ) ) + ( B .ih B ) ) |
| 88 |
|
his5 |
|- ( ( C e. CC /\ B e. ~H /\ A e. ~H ) -> ( B .ih ( C .h A ) ) = ( ( * ` C ) x. ( B .ih A ) ) ) |
| 89 |
5 4 3 88
|
mp3an |
|- ( B .ih ( C .h A ) ) = ( ( * ` C ) x. ( B .ih A ) ) |
| 90 |
5 15
|
cjmuli |
|- ( * ` ( C x. ( A .ih B ) ) ) = ( ( * ` C ) x. ( * ` ( A .ih B ) ) ) |
| 91 |
4 3
|
his1i |
|- ( B .ih A ) = ( * ` ( A .ih B ) ) |
| 92 |
91
|
oveq2i |
|- ( ( * ` C ) x. ( B .ih A ) ) = ( ( * ` C ) x. ( * ` ( A .ih B ) ) ) |
| 93 |
90 92
|
eqtr4i |
|- ( * ` ( C x. ( A .ih B ) ) ) = ( ( * ` C ) x. ( B .ih A ) ) |
| 94 |
89 93
|
eqtr4i |
|- ( B .ih ( C .h A ) ) = ( * ` ( C x. ( A .ih B ) ) ) |
| 95 |
94
|
oveq1i |
|- ( ( B .ih ( C .h A ) ) + ( B .ih B ) ) = ( ( * ` ( C x. ( A .ih B ) ) ) + ( B .ih B ) ) |
| 96 |
87 95
|
eqtri |
|- ( B .ih ( ( C .h A ) +h B ) ) = ( ( * ` ( C x. ( A .ih B ) ) ) + ( B .ih B ) ) |
| 97 |
85 96
|
oveq12i |
|- ( ( ( C .h A ) .ih ( ( C .h A ) +h B ) ) + ( B .ih ( ( C .h A ) +h B ) ) ) = ( ( ( C x. ( ( * ` C ) x. ( A .ih A ) ) ) + ( C x. ( A .ih B ) ) ) + ( ( * ` ( C x. ( A .ih B ) ) ) + ( B .ih B ) ) ) |
| 98 |
72 74 97
|
3eqtrri |
|- ( ( ( C x. ( ( * ` C ) x. ( A .ih A ) ) ) + ( C x. ( A .ih B ) ) ) + ( ( * ` ( C x. ( A .ih B ) ) ) + ( B .ih B ) ) ) = ( ( T ` ( ( C .h A ) +h B ) ) .ih ( T ` ( ( C .h A ) +h B ) ) ) |
| 99 |
1
|
lnopli |
|- ( ( C e. CC /\ A e. ~H /\ B e. ~H ) -> ( T ` ( ( C .h A ) +h B ) ) = ( ( C .h ( T ` A ) ) +h ( T ` B ) ) ) |
| 100 |
5 3 4 99
|
mp3an |
|- ( T ` ( ( C .h A ) +h B ) ) = ( ( C .h ( T ` A ) ) +h ( T ` B ) ) |
| 101 |
100 100
|
oveq12i |
|- ( ( T ` ( ( C .h A ) +h B ) ) .ih ( T ` ( ( C .h A ) +h B ) ) ) = ( ( ( C .h ( T ` A ) ) +h ( T ` B ) ) .ih ( ( C .h ( T ` A ) ) +h ( T ` B ) ) ) |
| 102 |
5 8
|
hvmulcli |
|- ( C .h ( T ` A ) ) e. ~H |
| 103 |
102 10
|
hvaddcli |
|- ( ( C .h ( T ` A ) ) +h ( T ` B ) ) e. ~H |
| 104 |
|
ax-his2 |
|- ( ( ( C .h ( T ` A ) ) e. ~H /\ ( T ` B ) e. ~H /\ ( ( C .h ( T ` A ) ) +h ( T ` B ) ) e. ~H ) -> ( ( ( C .h ( T ` A ) ) +h ( T ` B ) ) .ih ( ( C .h ( T ` A ) ) +h ( T ` B ) ) ) = ( ( ( C .h ( T ` A ) ) .ih ( ( C .h ( T ` A ) ) +h ( T ` B ) ) ) + ( ( T ` B ) .ih ( ( C .h ( T ` A ) ) +h ( T ` B ) ) ) ) ) |
| 105 |
102 10 103 104
|
mp3an |
|- ( ( ( C .h ( T ` A ) ) +h ( T ` B ) ) .ih ( ( C .h ( T ` A ) ) +h ( T ` B ) ) ) = ( ( ( C .h ( T ` A ) ) .ih ( ( C .h ( T ` A ) ) +h ( T ` B ) ) ) + ( ( T ` B ) .ih ( ( C .h ( T ` A ) ) +h ( T ` B ) ) ) ) |
| 106 |
101 105
|
eqtri |
|- ( ( T ` ( ( C .h A ) +h B ) ) .ih ( T ` ( ( C .h A ) +h B ) ) ) = ( ( ( C .h ( T ` A ) ) .ih ( ( C .h ( T ` A ) ) +h ( T ` B ) ) ) + ( ( T ` B ) .ih ( ( C .h ( T ` A ) ) +h ( T ` B ) ) ) ) |
| 107 |
|
ax-his3 |
|- ( ( C e. CC /\ ( T ` A ) e. ~H /\ ( ( C .h ( T ` A ) ) +h ( T ` B ) ) e. ~H ) -> ( ( C .h ( T ` A ) ) .ih ( ( C .h ( T ` A ) ) +h ( T ` B ) ) ) = ( C x. ( ( T ` A ) .ih ( ( C .h ( T ` A ) ) +h ( T ` B ) ) ) ) ) |
| 108 |
5 8 103 107
|
mp3an |
|- ( ( C .h ( T ` A ) ) .ih ( ( C .h ( T ` A ) ) +h ( T ` B ) ) ) = ( C x. ( ( T ` A ) .ih ( ( C .h ( T ` A ) ) +h ( T ` B ) ) ) ) |
| 109 |
|
his7 |
|- ( ( ( T ` A ) e. ~H /\ ( C .h ( T ` A ) ) e. ~H /\ ( T ` B ) e. ~H ) -> ( ( T ` A ) .ih ( ( C .h ( T ` A ) ) +h ( T ` B ) ) ) = ( ( ( T ` A ) .ih ( C .h ( T ` A ) ) ) + ( ( T ` A ) .ih ( T ` B ) ) ) ) |
| 110 |
8 102 10 109
|
mp3an |
|- ( ( T ` A ) .ih ( ( C .h ( T ` A ) ) +h ( T ` B ) ) ) = ( ( ( T ` A ) .ih ( C .h ( T ` A ) ) ) + ( ( T ` A ) .ih ( T ` B ) ) ) |
| 111 |
|
his5 |
|- ( ( C e. CC /\ ( T ` A ) e. ~H /\ ( T ` A ) e. ~H ) -> ( ( T ` A ) .ih ( C .h ( T ` A ) ) ) = ( ( * ` C ) x. ( ( T ` A ) .ih ( T ` A ) ) ) ) |
| 112 |
5 8 8 111
|
mp3an |
|- ( ( T ` A ) .ih ( C .h ( T ` A ) ) ) = ( ( * ` C ) x. ( ( T ` A ) .ih ( T ` A ) ) ) |
| 113 |
112
|
oveq1i |
|- ( ( ( T ` A ) .ih ( C .h ( T ` A ) ) ) + ( ( T ` A ) .ih ( T ` B ) ) ) = ( ( ( * ` C ) x. ( ( T ` A ) .ih ( T ` A ) ) ) + ( ( T ` A ) .ih ( T ` B ) ) ) |
| 114 |
110 113
|
eqtri |
|- ( ( T ` A ) .ih ( ( C .h ( T ` A ) ) +h ( T ` B ) ) ) = ( ( ( * ` C ) x. ( ( T ` A ) .ih ( T ` A ) ) ) + ( ( T ` A ) .ih ( T ` B ) ) ) |
| 115 |
114
|
oveq2i |
|- ( C x. ( ( T ` A ) .ih ( ( C .h ( T ` A ) ) +h ( T ` B ) ) ) ) = ( C x. ( ( ( * ` C ) x. ( ( T ` A ) .ih ( T ` A ) ) ) + ( ( T ` A ) .ih ( T ` B ) ) ) ) |
| 116 |
5 53 11
|
adddii |
|- ( C x. ( ( ( * ` C ) x. ( ( T ` A ) .ih ( T ` A ) ) ) + ( ( T ` A ) .ih ( T ` B ) ) ) ) = ( ( C x. ( ( * ` C ) x. ( ( T ` A ) .ih ( T ` A ) ) ) ) + ( C x. ( ( T ` A ) .ih ( T ` B ) ) ) ) |
| 117 |
108 115 116
|
3eqtri |
|- ( ( C .h ( T ` A ) ) .ih ( ( C .h ( T ` A ) ) +h ( T ` B ) ) ) = ( ( C x. ( ( * ` C ) x. ( ( T ` A ) .ih ( T ` A ) ) ) ) + ( C x. ( ( T ` A ) .ih ( T ` B ) ) ) ) |
| 118 |
|
his7 |
|- ( ( ( T ` B ) e. ~H /\ ( C .h ( T ` A ) ) e. ~H /\ ( T ` B ) e. ~H ) -> ( ( T ` B ) .ih ( ( C .h ( T ` A ) ) +h ( T ` B ) ) ) = ( ( ( T ` B ) .ih ( C .h ( T ` A ) ) ) + ( ( T ` B ) .ih ( T ` B ) ) ) ) |
| 119 |
10 102 10 118
|
mp3an |
|- ( ( T ` B ) .ih ( ( C .h ( T ` A ) ) +h ( T ` B ) ) ) = ( ( ( T ` B ) .ih ( C .h ( T ` A ) ) ) + ( ( T ` B ) .ih ( T ` B ) ) ) |
| 120 |
|
his5 |
|- ( ( C e. CC /\ ( T ` B ) e. ~H /\ ( T ` A ) e. ~H ) -> ( ( T ` B ) .ih ( C .h ( T ` A ) ) ) = ( ( * ` C ) x. ( ( T ` B ) .ih ( T ` A ) ) ) ) |
| 121 |
5 10 8 120
|
mp3an |
|- ( ( T ` B ) .ih ( C .h ( T ` A ) ) ) = ( ( * ` C ) x. ( ( T ` B ) .ih ( T ` A ) ) ) |
| 122 |
5 11
|
cjmuli |
|- ( * ` ( C x. ( ( T ` A ) .ih ( T ` B ) ) ) ) = ( ( * ` C ) x. ( * ` ( ( T ` A ) .ih ( T ` B ) ) ) ) |
| 123 |
10 8
|
his1i |
|- ( ( T ` B ) .ih ( T ` A ) ) = ( * ` ( ( T ` A ) .ih ( T ` B ) ) ) |
| 124 |
123
|
oveq2i |
|- ( ( * ` C ) x. ( ( T ` B ) .ih ( T ` A ) ) ) = ( ( * ` C ) x. ( * ` ( ( T ` A ) .ih ( T ` B ) ) ) ) |
| 125 |
122 124
|
eqtr4i |
|- ( * ` ( C x. ( ( T ` A ) .ih ( T ` B ) ) ) ) = ( ( * ` C ) x. ( ( T ` B ) .ih ( T ` A ) ) ) |
| 126 |
121 125
|
eqtr4i |
|- ( ( T ` B ) .ih ( C .h ( T ` A ) ) ) = ( * ` ( C x. ( ( T ` A ) .ih ( T ` B ) ) ) ) |
| 127 |
126
|
oveq1i |
|- ( ( ( T ` B ) .ih ( C .h ( T ` A ) ) ) + ( ( T ` B ) .ih ( T ` B ) ) ) = ( ( * ` ( C x. ( ( T ` A ) .ih ( T ` B ) ) ) ) + ( ( T ` B ) .ih ( T ` B ) ) ) |
| 128 |
119 127
|
eqtri |
|- ( ( T ` B ) .ih ( ( C .h ( T ` A ) ) +h ( T ` B ) ) ) = ( ( * ` ( C x. ( ( T ` A ) .ih ( T ` B ) ) ) ) + ( ( T ` B ) .ih ( T ` B ) ) ) |
| 129 |
117 128
|
oveq12i |
|- ( ( ( C .h ( T ` A ) ) .ih ( ( C .h ( T ` A ) ) +h ( T ` B ) ) ) + ( ( T ` B ) .ih ( ( C .h ( T ` A ) ) +h ( T ` B ) ) ) ) = ( ( ( C x. ( ( * ` C ) x. ( ( T ` A ) .ih ( T ` A ) ) ) ) + ( C x. ( ( T ` A ) .ih ( T ` B ) ) ) ) + ( ( * ` ( C x. ( ( T ` A ) .ih ( T ` B ) ) ) ) + ( ( T ` B ) .ih ( T ` B ) ) ) ) |
| 130 |
98 106 129
|
3eqtrri |
|- ( ( ( C x. ( ( * ` C ) x. ( ( T ` A ) .ih ( T ` A ) ) ) ) + ( C x. ( ( T ` A ) .ih ( T ` B ) ) ) ) + ( ( * ` ( C x. ( ( T ` A ) .ih ( T ` B ) ) ) ) + ( ( T ` B ) .ih ( T ` B ) ) ) ) = ( ( ( C x. ( ( * ` C ) x. ( A .ih A ) ) ) + ( C x. ( A .ih B ) ) ) + ( ( * ` ( C x. ( A .ih B ) ) ) + ( B .ih B ) ) ) |
| 131 |
63 130
|
eqtr4i |
|- ( ( ( C x. ( ( * ` C ) x. ( A .ih A ) ) ) + ( B .ih B ) ) + ( ( C x. ( A .ih B ) ) + ( * ` ( C x. ( A .ih B ) ) ) ) ) = ( ( ( C x. ( ( * ` C ) x. ( ( T ` A ) .ih ( T ` A ) ) ) ) + ( C x. ( ( T ` A ) .ih ( T ` B ) ) ) ) + ( ( * ` ( C x. ( ( T ` A ) .ih ( T ` B ) ) ) ) + ( ( T ` B ) .ih ( T ` B ) ) ) ) |
| 132 |
57 131
|
eqtr4i |
|- ( ( ( C x. ( ( * ` C ) x. ( ( T ` A ) .ih ( T ` A ) ) ) ) + ( ( T ` B ) .ih ( T ` B ) ) ) + ( ( C x. ( ( T ` A ) .ih ( T ` B ) ) ) + ( * ` ( C x. ( ( T ` A ) .ih ( T ` B ) ) ) ) ) ) = ( ( ( C x. ( ( * ` C ) x. ( A .ih A ) ) ) + ( B .ih B ) ) + ( ( C x. ( A .ih B ) ) + ( * ` ( C x. ( A .ih B ) ) ) ) ) |
| 133 |
50 132
|
eqtr3i |
|- ( ( ( C x. ( ( * ` C ) x. ( A .ih A ) ) ) + ( B .ih B ) ) + ( ( C x. ( ( T ` A ) .ih ( T ` B ) ) ) + ( * ` ( C x. ( ( T ` A ) .ih ( T ` B ) ) ) ) ) ) = ( ( ( C x. ( ( * ` C ) x. ( A .ih A ) ) ) + ( B .ih B ) ) + ( ( C x. ( A .ih B ) ) + ( * ` ( C x. ( A .ih B ) ) ) ) ) |
| 134 |
60 61
|
addcli |
|- ( ( C x. ( ( * ` C ) x. ( A .ih A ) ) ) + ( B .ih B ) ) e. CC |
| 135 |
12 56
|
addcli |
|- ( ( C x. ( ( T ` A ) .ih ( T ` B ) ) ) + ( * ` ( C x. ( ( T ` A ) .ih ( T ` B ) ) ) ) ) e. CC |
| 136 |
16 62
|
addcli |
|- ( ( C x. ( A .ih B ) ) + ( * ` ( C x. ( A .ih B ) ) ) ) e. CC |
| 137 |
134 135 136
|
addcani |
|- ( ( ( ( C x. ( ( * ` C ) x. ( A .ih A ) ) ) + ( B .ih B ) ) + ( ( C x. ( ( T ` A ) .ih ( T ` B ) ) ) + ( * ` ( C x. ( ( T ` A ) .ih ( T ` B ) ) ) ) ) ) = ( ( ( C x. ( ( * ` C ) x. ( A .ih A ) ) ) + ( B .ih B ) ) + ( ( C x. ( A .ih B ) ) + ( * ` ( C x. ( A .ih B ) ) ) ) ) <-> ( ( C x. ( ( T ` A ) .ih ( T ` B ) ) ) + ( * ` ( C x. ( ( T ` A ) .ih ( T ` B ) ) ) ) ) = ( ( C x. ( A .ih B ) ) + ( * ` ( C x. ( A .ih B ) ) ) ) ) |
| 138 |
133 137
|
mpbi |
|- ( ( C x. ( ( T ` A ) .ih ( T ` B ) ) ) + ( * ` ( C x. ( ( T ` A ) .ih ( T ` B ) ) ) ) ) = ( ( C x. ( A .ih B ) ) + ( * ` ( C x. ( A .ih B ) ) ) ) |
| 139 |
138
|
oveq1i |
|- ( ( ( C x. ( ( T ` A ) .ih ( T ` B ) ) ) + ( * ` ( C x. ( ( T ` A ) .ih ( T ` B ) ) ) ) ) / 2 ) = ( ( ( C x. ( A .ih B ) ) + ( * ` ( C x. ( A .ih B ) ) ) ) / 2 ) |
| 140 |
18 139
|
eqtr4i |
|- ( Re ` ( C x. ( A .ih B ) ) ) = ( ( ( C x. ( ( T ` A ) .ih ( T ` B ) ) ) + ( * ` ( C x. ( ( T ` A ) .ih ( T ` B ) ) ) ) ) / 2 ) |
| 141 |
14 140
|
eqtr4i |
|- ( Re ` ( C x. ( ( T ` A ) .ih ( T ` B ) ) ) ) = ( Re ` ( C x. ( A .ih B ) ) ) |