| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lsmfgcl.u |
|- U = ( LSubSp ` W ) |
| 2 |
|
lsmfgcl.p |
|- .(+) = ( LSSum ` W ) |
| 3 |
|
lsmfgcl.d |
|- D = ( W |`s A ) |
| 4 |
|
lsmfgcl.e |
|- E = ( W |`s B ) |
| 5 |
|
lsmfgcl.f |
|- F = ( W |`s ( A .(+) B ) ) |
| 6 |
|
lsmfgcl.w |
|- ( ph -> W e. LMod ) |
| 7 |
|
lsmfgcl.a |
|- ( ph -> A e. U ) |
| 8 |
|
lsmfgcl.b |
|- ( ph -> B e. U ) |
| 9 |
|
lsmfgcl.df |
|- ( ph -> D e. LFinGen ) |
| 10 |
|
lsmfgcl.ef |
|- ( ph -> E e. LFinGen ) |
| 11 |
|
eqid |
|- ( LSpan ` W ) = ( LSpan ` W ) |
| 12 |
|
eqid |
|- ( Base ` W ) = ( Base ` W ) |
| 13 |
3 1 11 12
|
islssfg2 |
|- ( ( W e. LMod /\ A e. U ) -> ( D e. LFinGen <-> E. a e. ( ~P ( Base ` W ) i^i Fin ) ( ( LSpan ` W ) ` a ) = A ) ) |
| 14 |
6 7 13
|
syl2anc |
|- ( ph -> ( D e. LFinGen <-> E. a e. ( ~P ( Base ` W ) i^i Fin ) ( ( LSpan ` W ) ` a ) = A ) ) |
| 15 |
9 14
|
mpbid |
|- ( ph -> E. a e. ( ~P ( Base ` W ) i^i Fin ) ( ( LSpan ` W ) ` a ) = A ) |
| 16 |
4 1 11 12
|
islssfg2 |
|- ( ( W e. LMod /\ B e. U ) -> ( E e. LFinGen <-> E. b e. ( ~P ( Base ` W ) i^i Fin ) ( ( LSpan ` W ) ` b ) = B ) ) |
| 17 |
6 8 16
|
syl2anc |
|- ( ph -> ( E e. LFinGen <-> E. b e. ( ~P ( Base ` W ) i^i Fin ) ( ( LSpan ` W ) ` b ) = B ) ) |
| 18 |
10 17
|
mpbid |
|- ( ph -> E. b e. ( ~P ( Base ` W ) i^i Fin ) ( ( LSpan ` W ) ` b ) = B ) |
| 19 |
18
|
adantr |
|- ( ( ph /\ a e. ( ~P ( Base ` W ) i^i Fin ) ) -> E. b e. ( ~P ( Base ` W ) i^i Fin ) ( ( LSpan ` W ) ` b ) = B ) |
| 20 |
|
inss1 |
|- ( ~P ( Base ` W ) i^i Fin ) C_ ~P ( Base ` W ) |
| 21 |
20
|
sseli |
|- ( a e. ( ~P ( Base ` W ) i^i Fin ) -> a e. ~P ( Base ` W ) ) |
| 22 |
21
|
elpwid |
|- ( a e. ( ~P ( Base ` W ) i^i Fin ) -> a C_ ( Base ` W ) ) |
| 23 |
20
|
sseli |
|- ( b e. ( ~P ( Base ` W ) i^i Fin ) -> b e. ~P ( Base ` W ) ) |
| 24 |
23
|
elpwid |
|- ( b e. ( ~P ( Base ` W ) i^i Fin ) -> b C_ ( Base ` W ) ) |
| 25 |
12 11 2
|
lsmsp2 |
|- ( ( W e. LMod /\ a C_ ( Base ` W ) /\ b C_ ( Base ` W ) ) -> ( ( ( LSpan ` W ) ` a ) .(+) ( ( LSpan ` W ) ` b ) ) = ( ( LSpan ` W ) ` ( a u. b ) ) ) |
| 26 |
6 22 24 25
|
syl3an |
|- ( ( ph /\ a e. ( ~P ( Base ` W ) i^i Fin ) /\ b e. ( ~P ( Base ` W ) i^i Fin ) ) -> ( ( ( LSpan ` W ) ` a ) .(+) ( ( LSpan ` W ) ` b ) ) = ( ( LSpan ` W ) ` ( a u. b ) ) ) |
| 27 |
26
|
3expb |
|- ( ( ph /\ ( a e. ( ~P ( Base ` W ) i^i Fin ) /\ b e. ( ~P ( Base ` W ) i^i Fin ) ) ) -> ( ( ( LSpan ` W ) ` a ) .(+) ( ( LSpan ` W ) ` b ) ) = ( ( LSpan ` W ) ` ( a u. b ) ) ) |
| 28 |
27
|
oveq2d |
|- ( ( ph /\ ( a e. ( ~P ( Base ` W ) i^i Fin ) /\ b e. ( ~P ( Base ` W ) i^i Fin ) ) ) -> ( W |`s ( ( ( LSpan ` W ) ` a ) .(+) ( ( LSpan ` W ) ` b ) ) ) = ( W |`s ( ( LSpan ` W ) ` ( a u. b ) ) ) ) |
| 29 |
6
|
adantr |
|- ( ( ph /\ ( a e. ( ~P ( Base ` W ) i^i Fin ) /\ b e. ( ~P ( Base ` W ) i^i Fin ) ) ) -> W e. LMod ) |
| 30 |
|
unss |
|- ( ( a C_ ( Base ` W ) /\ b C_ ( Base ` W ) ) <-> ( a u. b ) C_ ( Base ` W ) ) |
| 31 |
30
|
biimpi |
|- ( ( a C_ ( Base ` W ) /\ b C_ ( Base ` W ) ) -> ( a u. b ) C_ ( Base ` W ) ) |
| 32 |
22 24 31
|
syl2an |
|- ( ( a e. ( ~P ( Base ` W ) i^i Fin ) /\ b e. ( ~P ( Base ` W ) i^i Fin ) ) -> ( a u. b ) C_ ( Base ` W ) ) |
| 33 |
32
|
adantl |
|- ( ( ph /\ ( a e. ( ~P ( Base ` W ) i^i Fin ) /\ b e. ( ~P ( Base ` W ) i^i Fin ) ) ) -> ( a u. b ) C_ ( Base ` W ) ) |
| 34 |
|
inss2 |
|- ( ~P ( Base ` W ) i^i Fin ) C_ Fin |
| 35 |
34
|
sseli |
|- ( a e. ( ~P ( Base ` W ) i^i Fin ) -> a e. Fin ) |
| 36 |
34
|
sseli |
|- ( b e. ( ~P ( Base ` W ) i^i Fin ) -> b e. Fin ) |
| 37 |
|
unfi |
|- ( ( a e. Fin /\ b e. Fin ) -> ( a u. b ) e. Fin ) |
| 38 |
35 36 37
|
syl2an |
|- ( ( a e. ( ~P ( Base ` W ) i^i Fin ) /\ b e. ( ~P ( Base ` W ) i^i Fin ) ) -> ( a u. b ) e. Fin ) |
| 39 |
38
|
adantl |
|- ( ( ph /\ ( a e. ( ~P ( Base ` W ) i^i Fin ) /\ b e. ( ~P ( Base ` W ) i^i Fin ) ) ) -> ( a u. b ) e. Fin ) |
| 40 |
|
eqid |
|- ( W |`s ( ( LSpan ` W ) ` ( a u. b ) ) ) = ( W |`s ( ( LSpan ` W ) ` ( a u. b ) ) ) |
| 41 |
11 12 40
|
islssfgi |
|- ( ( W e. LMod /\ ( a u. b ) C_ ( Base ` W ) /\ ( a u. b ) e. Fin ) -> ( W |`s ( ( LSpan ` W ) ` ( a u. b ) ) ) e. LFinGen ) |
| 42 |
29 33 39 41
|
syl3anc |
|- ( ( ph /\ ( a e. ( ~P ( Base ` W ) i^i Fin ) /\ b e. ( ~P ( Base ` W ) i^i Fin ) ) ) -> ( W |`s ( ( LSpan ` W ) ` ( a u. b ) ) ) e. LFinGen ) |
| 43 |
28 42
|
eqeltrd |
|- ( ( ph /\ ( a e. ( ~P ( Base ` W ) i^i Fin ) /\ b e. ( ~P ( Base ` W ) i^i Fin ) ) ) -> ( W |`s ( ( ( LSpan ` W ) ` a ) .(+) ( ( LSpan ` W ) ` b ) ) ) e. LFinGen ) |
| 44 |
43
|
anassrs |
|- ( ( ( ph /\ a e. ( ~P ( Base ` W ) i^i Fin ) ) /\ b e. ( ~P ( Base ` W ) i^i Fin ) ) -> ( W |`s ( ( ( LSpan ` W ) ` a ) .(+) ( ( LSpan ` W ) ` b ) ) ) e. LFinGen ) |
| 45 |
|
oveq2 |
|- ( ( ( LSpan ` W ) ` b ) = B -> ( ( ( LSpan ` W ) ` a ) .(+) ( ( LSpan ` W ) ` b ) ) = ( ( ( LSpan ` W ) ` a ) .(+) B ) ) |
| 46 |
45
|
oveq2d |
|- ( ( ( LSpan ` W ) ` b ) = B -> ( W |`s ( ( ( LSpan ` W ) ` a ) .(+) ( ( LSpan ` W ) ` b ) ) ) = ( W |`s ( ( ( LSpan ` W ) ` a ) .(+) B ) ) ) |
| 47 |
46
|
eleq1d |
|- ( ( ( LSpan ` W ) ` b ) = B -> ( ( W |`s ( ( ( LSpan ` W ) ` a ) .(+) ( ( LSpan ` W ) ` b ) ) ) e. LFinGen <-> ( W |`s ( ( ( LSpan ` W ) ` a ) .(+) B ) ) e. LFinGen ) ) |
| 48 |
44 47
|
syl5ibcom |
|- ( ( ( ph /\ a e. ( ~P ( Base ` W ) i^i Fin ) ) /\ b e. ( ~P ( Base ` W ) i^i Fin ) ) -> ( ( ( LSpan ` W ) ` b ) = B -> ( W |`s ( ( ( LSpan ` W ) ` a ) .(+) B ) ) e. LFinGen ) ) |
| 49 |
48
|
rexlimdva |
|- ( ( ph /\ a e. ( ~P ( Base ` W ) i^i Fin ) ) -> ( E. b e. ( ~P ( Base ` W ) i^i Fin ) ( ( LSpan ` W ) ` b ) = B -> ( W |`s ( ( ( LSpan ` W ) ` a ) .(+) B ) ) e. LFinGen ) ) |
| 50 |
19 49
|
mpd |
|- ( ( ph /\ a e. ( ~P ( Base ` W ) i^i Fin ) ) -> ( W |`s ( ( ( LSpan ` W ) ` a ) .(+) B ) ) e. LFinGen ) |
| 51 |
|
oveq1 |
|- ( ( ( LSpan ` W ) ` a ) = A -> ( ( ( LSpan ` W ) ` a ) .(+) B ) = ( A .(+) B ) ) |
| 52 |
51
|
oveq2d |
|- ( ( ( LSpan ` W ) ` a ) = A -> ( W |`s ( ( ( LSpan ` W ) ` a ) .(+) B ) ) = ( W |`s ( A .(+) B ) ) ) |
| 53 |
52
|
eleq1d |
|- ( ( ( LSpan ` W ) ` a ) = A -> ( ( W |`s ( ( ( LSpan ` W ) ` a ) .(+) B ) ) e. LFinGen <-> ( W |`s ( A .(+) B ) ) e. LFinGen ) ) |
| 54 |
50 53
|
syl5ibcom |
|- ( ( ph /\ a e. ( ~P ( Base ` W ) i^i Fin ) ) -> ( ( ( LSpan ` W ) ` a ) = A -> ( W |`s ( A .(+) B ) ) e. LFinGen ) ) |
| 55 |
54
|
rexlimdva |
|- ( ph -> ( E. a e. ( ~P ( Base ` W ) i^i Fin ) ( ( LSpan ` W ) ` a ) = A -> ( W |`s ( A .(+) B ) ) e. LFinGen ) ) |
| 56 |
15 55
|
mpd |
|- ( ph -> ( W |`s ( A .(+) B ) ) e. LFinGen ) |
| 57 |
5 56
|
eqeltrid |
|- ( ph -> F e. LFinGen ) |