Description: The sum of two finitely generated submodules is finitely generated. (Contributed by Stefan O'Rear, 24-Jan-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | lsmfgcl.u | |
|
lsmfgcl.p | |
||
lsmfgcl.d | |
||
lsmfgcl.e | |
||
lsmfgcl.f | |
||
lsmfgcl.w | |
||
lsmfgcl.a | |
||
lsmfgcl.b | |
||
lsmfgcl.df | |
||
lsmfgcl.ef | |
||
Assertion | lsmfgcl | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lsmfgcl.u | |
|
2 | lsmfgcl.p | |
|
3 | lsmfgcl.d | |
|
4 | lsmfgcl.e | |
|
5 | lsmfgcl.f | |
|
6 | lsmfgcl.w | |
|
7 | lsmfgcl.a | |
|
8 | lsmfgcl.b | |
|
9 | lsmfgcl.df | |
|
10 | lsmfgcl.ef | |
|
11 | eqid | |
|
12 | eqid | |
|
13 | 3 1 11 12 | islssfg2 | |
14 | 6 7 13 | syl2anc | |
15 | 9 14 | mpbid | |
16 | 4 1 11 12 | islssfg2 | |
17 | 6 8 16 | syl2anc | |
18 | 10 17 | mpbid | |
19 | 18 | adantr | |
20 | inss1 | |
|
21 | 20 | sseli | |
22 | 21 | elpwid | |
23 | 20 | sseli | |
24 | 23 | elpwid | |
25 | 12 11 2 | lsmsp2 | |
26 | 6 22 24 25 | syl3an | |
27 | 26 | 3expb | |
28 | 27 | oveq2d | |
29 | 6 | adantr | |
30 | unss | |
|
31 | 30 | biimpi | |
32 | 22 24 31 | syl2an | |
33 | 32 | adantl | |
34 | inss2 | |
|
35 | 34 | sseli | |
36 | 34 | sseli | |
37 | unfi | |
|
38 | 35 36 37 | syl2an | |
39 | 38 | adantl | |
40 | eqid | |
|
41 | 11 12 40 | islssfgi | |
42 | 29 33 39 41 | syl3anc | |
43 | 28 42 | eqeltrd | |
44 | 43 | anassrs | |
45 | oveq2 | |
|
46 | 45 | oveq2d | |
47 | 46 | eleq1d | |
48 | 44 47 | syl5ibcom | |
49 | 48 | rexlimdva | |
50 | 19 49 | mpd | |
51 | oveq1 | |
|
52 | 51 | oveq2d | |
53 | 52 | eleq1d | |
54 | 50 53 | syl5ibcom | |
55 | 54 | rexlimdva | |
56 | 15 55 | mpd | |
57 | 5 56 | eqeltrid | |