Metamath Proof Explorer


Theorem lsmfgcl

Description: The sum of two finitely generated submodules is finitely generated. (Contributed by Stefan O'Rear, 24-Jan-2015)

Ref Expression
Hypotheses lsmfgcl.u U = LSubSp W
lsmfgcl.p ˙ = LSSum W
lsmfgcl.d D = W 𝑠 A
lsmfgcl.e E = W 𝑠 B
lsmfgcl.f F = W 𝑠 A ˙ B
lsmfgcl.w φ W LMod
lsmfgcl.a φ A U
lsmfgcl.b φ B U
lsmfgcl.df φ D LFinGen
lsmfgcl.ef φ E LFinGen
Assertion lsmfgcl φ F LFinGen

Proof

Step Hyp Ref Expression
1 lsmfgcl.u U = LSubSp W
2 lsmfgcl.p ˙ = LSSum W
3 lsmfgcl.d D = W 𝑠 A
4 lsmfgcl.e E = W 𝑠 B
5 lsmfgcl.f F = W 𝑠 A ˙ B
6 lsmfgcl.w φ W LMod
7 lsmfgcl.a φ A U
8 lsmfgcl.b φ B U
9 lsmfgcl.df φ D LFinGen
10 lsmfgcl.ef φ E LFinGen
11 eqid LSpan W = LSpan W
12 eqid Base W = Base W
13 3 1 11 12 islssfg2 W LMod A U D LFinGen a 𝒫 Base W Fin LSpan W a = A
14 6 7 13 syl2anc φ D LFinGen a 𝒫 Base W Fin LSpan W a = A
15 9 14 mpbid φ a 𝒫 Base W Fin LSpan W a = A
16 4 1 11 12 islssfg2 W LMod B U E LFinGen b 𝒫 Base W Fin LSpan W b = B
17 6 8 16 syl2anc φ E LFinGen b 𝒫 Base W Fin LSpan W b = B
18 10 17 mpbid φ b 𝒫 Base W Fin LSpan W b = B
19 18 adantr φ a 𝒫 Base W Fin b 𝒫 Base W Fin LSpan W b = B
20 inss1 𝒫 Base W Fin 𝒫 Base W
21 20 sseli a 𝒫 Base W Fin a 𝒫 Base W
22 21 elpwid a 𝒫 Base W Fin a Base W
23 20 sseli b 𝒫 Base W Fin b 𝒫 Base W
24 23 elpwid b 𝒫 Base W Fin b Base W
25 12 11 2 lsmsp2 W LMod a Base W b Base W LSpan W a ˙ LSpan W b = LSpan W a b
26 6 22 24 25 syl3an φ a 𝒫 Base W Fin b 𝒫 Base W Fin LSpan W a ˙ LSpan W b = LSpan W a b
27 26 3expb φ a 𝒫 Base W Fin b 𝒫 Base W Fin LSpan W a ˙ LSpan W b = LSpan W a b
28 27 oveq2d φ a 𝒫 Base W Fin b 𝒫 Base W Fin W 𝑠 LSpan W a ˙ LSpan W b = W 𝑠 LSpan W a b
29 6 adantr φ a 𝒫 Base W Fin b 𝒫 Base W Fin W LMod
30 unss a Base W b Base W a b Base W
31 30 biimpi a Base W b Base W a b Base W
32 22 24 31 syl2an a 𝒫 Base W Fin b 𝒫 Base W Fin a b Base W
33 32 adantl φ a 𝒫 Base W Fin b 𝒫 Base W Fin a b Base W
34 inss2 𝒫 Base W Fin Fin
35 34 sseli a 𝒫 Base W Fin a Fin
36 34 sseli b 𝒫 Base W Fin b Fin
37 unfi a Fin b Fin a b Fin
38 35 36 37 syl2an a 𝒫 Base W Fin b 𝒫 Base W Fin a b Fin
39 38 adantl φ a 𝒫 Base W Fin b 𝒫 Base W Fin a b Fin
40 eqid W 𝑠 LSpan W a b = W 𝑠 LSpan W a b
41 11 12 40 islssfgi W LMod a b Base W a b Fin W 𝑠 LSpan W a b LFinGen
42 29 33 39 41 syl3anc φ a 𝒫 Base W Fin b 𝒫 Base W Fin W 𝑠 LSpan W a b LFinGen
43 28 42 eqeltrd φ a 𝒫 Base W Fin b 𝒫 Base W Fin W 𝑠 LSpan W a ˙ LSpan W b LFinGen
44 43 anassrs φ a 𝒫 Base W Fin b 𝒫 Base W Fin W 𝑠 LSpan W a ˙ LSpan W b LFinGen
45 oveq2 LSpan W b = B LSpan W a ˙ LSpan W b = LSpan W a ˙ B
46 45 oveq2d LSpan W b = B W 𝑠 LSpan W a ˙ LSpan W b = W 𝑠 LSpan W a ˙ B
47 46 eleq1d LSpan W b = B W 𝑠 LSpan W a ˙ LSpan W b LFinGen W 𝑠 LSpan W a ˙ B LFinGen
48 44 47 syl5ibcom φ a 𝒫 Base W Fin b 𝒫 Base W Fin LSpan W b = B W 𝑠 LSpan W a ˙ B LFinGen
49 48 rexlimdva φ a 𝒫 Base W Fin b 𝒫 Base W Fin LSpan W b = B W 𝑠 LSpan W a ˙ B LFinGen
50 19 49 mpd φ a 𝒫 Base W Fin W 𝑠 LSpan W a ˙ B LFinGen
51 oveq1 LSpan W a = A LSpan W a ˙ B = A ˙ B
52 51 oveq2d LSpan W a = A W 𝑠 LSpan W a ˙ B = W 𝑠 A ˙ B
53 52 eleq1d LSpan W a = A W 𝑠 LSpan W a ˙ B LFinGen W 𝑠 A ˙ B LFinGen
54 50 53 syl5ibcom φ a 𝒫 Base W Fin LSpan W a = A W 𝑠 A ˙ B LFinGen
55 54 rexlimdva φ a 𝒫 Base W Fin LSpan W a = A W 𝑠 A ˙ B LFinGen
56 15 55 mpd φ W 𝑠 A ˙ B LFinGen
57 5 56 eqeltrid φ F LFinGen