Metamath Proof Explorer


Theorem lsmfgcl

Description: The sum of two finitely generated submodules is finitely generated. (Contributed by Stefan O'Rear, 24-Jan-2015)

Ref Expression
Hypotheses lsmfgcl.u U=LSubSpW
lsmfgcl.p ˙=LSSumW
lsmfgcl.d D=W𝑠A
lsmfgcl.e E=W𝑠B
lsmfgcl.f F=W𝑠A˙B
lsmfgcl.w φWLMod
lsmfgcl.a φAU
lsmfgcl.b φBU
lsmfgcl.df φDLFinGen
lsmfgcl.ef φELFinGen
Assertion lsmfgcl φFLFinGen

Proof

Step Hyp Ref Expression
1 lsmfgcl.u U=LSubSpW
2 lsmfgcl.p ˙=LSSumW
3 lsmfgcl.d D=W𝑠A
4 lsmfgcl.e E=W𝑠B
5 lsmfgcl.f F=W𝑠A˙B
6 lsmfgcl.w φWLMod
7 lsmfgcl.a φAU
8 lsmfgcl.b φBU
9 lsmfgcl.df φDLFinGen
10 lsmfgcl.ef φELFinGen
11 eqid LSpanW=LSpanW
12 eqid BaseW=BaseW
13 3 1 11 12 islssfg2 WLModAUDLFinGena𝒫BaseWFinLSpanWa=A
14 6 7 13 syl2anc φDLFinGena𝒫BaseWFinLSpanWa=A
15 9 14 mpbid φa𝒫BaseWFinLSpanWa=A
16 4 1 11 12 islssfg2 WLModBUELFinGenb𝒫BaseWFinLSpanWb=B
17 6 8 16 syl2anc φELFinGenb𝒫BaseWFinLSpanWb=B
18 10 17 mpbid φb𝒫BaseWFinLSpanWb=B
19 18 adantr φa𝒫BaseWFinb𝒫BaseWFinLSpanWb=B
20 inss1 𝒫BaseWFin𝒫BaseW
21 20 sseli a𝒫BaseWFina𝒫BaseW
22 21 elpwid a𝒫BaseWFinaBaseW
23 20 sseli b𝒫BaseWFinb𝒫BaseW
24 23 elpwid b𝒫BaseWFinbBaseW
25 12 11 2 lsmsp2 WLModaBaseWbBaseWLSpanWa˙LSpanWb=LSpanWab
26 6 22 24 25 syl3an φa𝒫BaseWFinb𝒫BaseWFinLSpanWa˙LSpanWb=LSpanWab
27 26 3expb φa𝒫BaseWFinb𝒫BaseWFinLSpanWa˙LSpanWb=LSpanWab
28 27 oveq2d φa𝒫BaseWFinb𝒫BaseWFinW𝑠LSpanWa˙LSpanWb=W𝑠LSpanWab
29 6 adantr φa𝒫BaseWFinb𝒫BaseWFinWLMod
30 unss aBaseWbBaseWabBaseW
31 30 biimpi aBaseWbBaseWabBaseW
32 22 24 31 syl2an a𝒫BaseWFinb𝒫BaseWFinabBaseW
33 32 adantl φa𝒫BaseWFinb𝒫BaseWFinabBaseW
34 inss2 𝒫BaseWFinFin
35 34 sseli a𝒫BaseWFinaFin
36 34 sseli b𝒫BaseWFinbFin
37 unfi aFinbFinabFin
38 35 36 37 syl2an a𝒫BaseWFinb𝒫BaseWFinabFin
39 38 adantl φa𝒫BaseWFinb𝒫BaseWFinabFin
40 eqid W𝑠LSpanWab=W𝑠LSpanWab
41 11 12 40 islssfgi WLModabBaseWabFinW𝑠LSpanWabLFinGen
42 29 33 39 41 syl3anc φa𝒫BaseWFinb𝒫BaseWFinW𝑠LSpanWabLFinGen
43 28 42 eqeltrd φa𝒫BaseWFinb𝒫BaseWFinW𝑠LSpanWa˙LSpanWbLFinGen
44 43 anassrs φa𝒫BaseWFinb𝒫BaseWFinW𝑠LSpanWa˙LSpanWbLFinGen
45 oveq2 LSpanWb=BLSpanWa˙LSpanWb=LSpanWa˙B
46 45 oveq2d LSpanWb=BW𝑠LSpanWa˙LSpanWb=W𝑠LSpanWa˙B
47 46 eleq1d LSpanWb=BW𝑠LSpanWa˙LSpanWbLFinGenW𝑠LSpanWa˙BLFinGen
48 44 47 syl5ibcom φa𝒫BaseWFinb𝒫BaseWFinLSpanWb=BW𝑠LSpanWa˙BLFinGen
49 48 rexlimdva φa𝒫BaseWFinb𝒫BaseWFinLSpanWb=BW𝑠LSpanWa˙BLFinGen
50 19 49 mpd φa𝒫BaseWFinW𝑠LSpanWa˙BLFinGen
51 oveq1 LSpanWa=ALSpanWa˙B=A˙B
52 51 oveq2d LSpanWa=AW𝑠LSpanWa˙B=W𝑠A˙B
53 52 eleq1d LSpanWa=AW𝑠LSpanWa˙BLFinGenW𝑠A˙BLFinGen
54 50 53 syl5ibcom φa𝒫BaseWFinLSpanWa=AW𝑠A˙BLFinGen
55 54 rexlimdva φa𝒫BaseWFinLSpanWa=AW𝑠A˙BLFinGen
56 15 55 mpd φW𝑠A˙BLFinGen
57 5 56 eqeltrid φFLFinGen