Step |
Hyp |
Ref |
Expression |
1 |
|
mplmapghm.p |
|- P = ( I mPoly R ) |
2 |
|
mplmapghm.b |
|- B = ( Base ` P ) |
3 |
|
mplmapghm.d |
|- D = { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } |
4 |
|
mplmapghm.h |
|- H = ( p e. B |-> ( p ` F ) ) |
5 |
|
mplmapghm.i |
|- ( ph -> I e. V ) |
6 |
|
mplmapghm.r |
|- ( ph -> R e. Grp ) |
7 |
|
mplmapghm.f |
|- ( ph -> F e. D ) |
8 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
9 |
|
eqid |
|- ( +g ` P ) = ( +g ` P ) |
10 |
|
eqid |
|- ( +g ` R ) = ( +g ` R ) |
11 |
1
|
mplgrp |
|- ( ( I e. V /\ R e. Grp ) -> P e. Grp ) |
12 |
5 6 11
|
syl2anc |
|- ( ph -> P e. Grp ) |
13 |
|
simpr |
|- ( ( ph /\ p e. B ) -> p e. B ) |
14 |
1 8 2 3 13
|
mplelf |
|- ( ( ph /\ p e. B ) -> p : D --> ( Base ` R ) ) |
15 |
7
|
adantr |
|- ( ( ph /\ p e. B ) -> F e. D ) |
16 |
14 15
|
ffvelcdmd |
|- ( ( ph /\ p e. B ) -> ( p ` F ) e. ( Base ` R ) ) |
17 |
16 4
|
fmptd |
|- ( ph -> H : B --> ( Base ` R ) ) |
18 |
|
simprl |
|- ( ( ph /\ ( q e. B /\ r e. B ) ) -> q e. B ) |
19 |
|
simprr |
|- ( ( ph /\ ( q e. B /\ r e. B ) ) -> r e. B ) |
20 |
1 2 10 9 18 19
|
mpladd |
|- ( ( ph /\ ( q e. B /\ r e. B ) ) -> ( q ( +g ` P ) r ) = ( q oF ( +g ` R ) r ) ) |
21 |
20
|
fveq1d |
|- ( ( ph /\ ( q e. B /\ r e. B ) ) -> ( ( q ( +g ` P ) r ) ` F ) = ( ( q oF ( +g ` R ) r ) ` F ) ) |
22 |
1 8 2 3 18
|
mplelf |
|- ( ( ph /\ ( q e. B /\ r e. B ) ) -> q : D --> ( Base ` R ) ) |
23 |
22
|
ffnd |
|- ( ( ph /\ ( q e. B /\ r e. B ) ) -> q Fn D ) |
24 |
1 8 2 3 19
|
mplelf |
|- ( ( ph /\ ( q e. B /\ r e. B ) ) -> r : D --> ( Base ` R ) ) |
25 |
24
|
ffnd |
|- ( ( ph /\ ( q e. B /\ r e. B ) ) -> r Fn D ) |
26 |
|
ovex |
|- ( NN0 ^m I ) e. _V |
27 |
3 26
|
rabex2 |
|- D e. _V |
28 |
27
|
a1i |
|- ( ( ph /\ ( q e. B /\ r e. B ) ) -> D e. _V ) |
29 |
|
inidm |
|- ( D i^i D ) = D |
30 |
|
eqidd |
|- ( ( ( ph /\ ( q e. B /\ r e. B ) ) /\ F e. D ) -> ( q ` F ) = ( q ` F ) ) |
31 |
|
eqidd |
|- ( ( ( ph /\ ( q e. B /\ r e. B ) ) /\ F e. D ) -> ( r ` F ) = ( r ` F ) ) |
32 |
23 25 28 28 29 30 31
|
ofval |
|- ( ( ( ph /\ ( q e. B /\ r e. B ) ) /\ F e. D ) -> ( ( q oF ( +g ` R ) r ) ` F ) = ( ( q ` F ) ( +g ` R ) ( r ` F ) ) ) |
33 |
7 32
|
mpidan |
|- ( ( ph /\ ( q e. B /\ r e. B ) ) -> ( ( q oF ( +g ` R ) r ) ` F ) = ( ( q ` F ) ( +g ` R ) ( r ` F ) ) ) |
34 |
21 33
|
eqtrd |
|- ( ( ph /\ ( q e. B /\ r e. B ) ) -> ( ( q ( +g ` P ) r ) ` F ) = ( ( q ` F ) ( +g ` R ) ( r ` F ) ) ) |
35 |
|
fveq1 |
|- ( p = ( q ( +g ` P ) r ) -> ( p ` F ) = ( ( q ( +g ` P ) r ) ` F ) ) |
36 |
12
|
adantr |
|- ( ( ph /\ ( q e. B /\ r e. B ) ) -> P e. Grp ) |
37 |
2 9 36 18 19
|
grpcld |
|- ( ( ph /\ ( q e. B /\ r e. B ) ) -> ( q ( +g ` P ) r ) e. B ) |
38 |
|
fvexd |
|- ( ( ph /\ ( q e. B /\ r e. B ) ) -> ( ( q ( +g ` P ) r ) ` F ) e. _V ) |
39 |
4 35 37 38
|
fvmptd3 |
|- ( ( ph /\ ( q e. B /\ r e. B ) ) -> ( H ` ( q ( +g ` P ) r ) ) = ( ( q ( +g ` P ) r ) ` F ) ) |
40 |
|
fveq1 |
|- ( p = q -> ( p ` F ) = ( q ` F ) ) |
41 |
|
fvexd |
|- ( ( ph /\ ( q e. B /\ r e. B ) ) -> ( q ` F ) e. _V ) |
42 |
4 40 18 41
|
fvmptd3 |
|- ( ( ph /\ ( q e. B /\ r e. B ) ) -> ( H ` q ) = ( q ` F ) ) |
43 |
|
fveq1 |
|- ( p = r -> ( p ` F ) = ( r ` F ) ) |
44 |
|
fvexd |
|- ( ( ph /\ ( q e. B /\ r e. B ) ) -> ( r ` F ) e. _V ) |
45 |
4 43 19 44
|
fvmptd3 |
|- ( ( ph /\ ( q e. B /\ r e. B ) ) -> ( H ` r ) = ( r ` F ) ) |
46 |
42 45
|
oveq12d |
|- ( ( ph /\ ( q e. B /\ r e. B ) ) -> ( ( H ` q ) ( +g ` R ) ( H ` r ) ) = ( ( q ` F ) ( +g ` R ) ( r ` F ) ) ) |
47 |
34 39 46
|
3eqtr4d |
|- ( ( ph /\ ( q e. B /\ r e. B ) ) -> ( H ` ( q ( +g ` P ) r ) ) = ( ( H ` q ) ( +g ` R ) ( H ` r ) ) ) |
48 |
2 8 9 10 12 6 17 47
|
isghmd |
|- ( ph -> H e. ( P GrpHom R ) ) |